doi: 103969/j. issn. 1000-0364. 2016. 10. 012

腺嘌呤 – 水分子团簇结构与振动频率的理论研究

陈文龙,孔 戈,周留柱,孔祥和

(曲阜师范大学物理工程学院,曲阜 273165)

摘 要:利用密度泛函理论在 B3LYP/6-311 + + G(d, p) 基组水平上对 $C_5H_5N_5 \cdot (H_2O)_m(m=1 \sim 3)$ 进行了优化与振动频率计算 得到了团簇的六种稳定结构. 应用 AIM 程序计算了三种最稳定结构的氢键临界点的拓扑参数 结果表明 .0—H…N 氢键的形成使得 O—H 之间电子密度减小 .伸缩振动频率减小 .产生了红移; N—H…O 氢键的形成使得 N—H 之间的电子密度减小 .键的强度变弱 .伸缩振动频率变小 ,发生了红移.利用 veda4 软件对团簇 $C_5H_5N_5 \cdot (H_2O)_m(m=0 \sim 3)$ 的红外光谱的振动频率进行模式指认 ,并对部分振动频率进行了比较.

关键词:腺嘌呤;密度泛函理论;氢键;红外光谱;偶极矩

中图分类号: 0641 文献标识码: A 文章编号: 1000-0364(2016) 05-0829-07

Theoretical investigation of the structures and vibrational frequencies of adenine – water clusters

CHEN Wen-Long , KONG Ge , ZHOU Liu-Zhu , KONG Xiang-He

(School of Physics And Engineering , Qufu Normal University , Qufu 273165 , China)

Abstract: The structures of $C_5H_5N_5 \cdot (H_2O)_m(m=1 \sim 3)$ molecules were optimized and their vibrational frequencies were calculated using density functional theory (DFT) at the B3LYP/6 – 311 + + G(d, f) level. AIM program was used to calculate the critical points' topological parameters of three most stable structures. The results show that the strong red – shift of O—H····N hydrogen bond is attributed to the decreases of the O—H electron density and the stretching vibrational frequency , meanwhile the red – shift of N—H···O hydrogen bond is attributed to the decreases of the N—H electron density and the stretching vibrational frequency of $C_5H_5N_5 \cdot (H_2O)_m(m=0 \sim 3)$ clusters were assigned by veda4 software and part of the vibration frequency were compared.

Key words: Adenine; DFT; Hydrogen bond; IR spectrum; Dipole moment

1 引 言

近年来,人们对氢键团簇的研究越来越感兴趣,进行了大量的实验和理论研究^[1-6]. 腺嘌呤 ($C_5H_5N_5$)又称维生素 B_4 ,简写成 A. 主要用于参 加 DNA 和 RNA 的合成,用于放射治疗、苯中毒和 抗肿瘤等引起的白细胞减少症,用于急性粒细胞减 少症 医药及生化研究.因此研究腺嘌呤与小分子 形成的氢键团簇,对于认识生物分子的结构、分子 间氢键作用等都具有非常重要的意义.

腺嘌呤与水分子可以通过氢键形成团簇分子, 氢键参与的质子转移反应和缔合现象是许多化学、 生物过程的基本步骤,其理论实验研究一直是化学 家们的研究重点. Colarusso^[7]等研究了尿嘧啶、胸

投稿日期: 2015-01-31

基金项目:曲阜师范大学科研启动基金(BSQD2004016);国家自然科学基金(11274200)

作者简介: 陈文龙 (1988—),男,硕士研究生,山东济南人,主要从事分子光谱研究. E-mail: 954923198@ qq. com 通讯作者: 周留柱. E-mail: dsgczlz@ 126. com

腺嘧啶和腺嘌呤在气相中的红外光谱 得出了三种 分子在 100 ~ 3700 cm⁻¹之间的红外光谱 . Hrouda^[8]等利用半经验算法研究了 AT 碱基对的结构、 能量和谐波振动光谱 . Kundo^[9]等利用密度泛函 理论研究了腺嘌呤分子的互变异构体 . Dobado^[10] 等应用密度泛函理论方法(DFT)和 MP2 方法研究 了腺嘌呤和过氧化氢(AHP)之间的氢键作用 . 本 文主要利用密度泛函理论方法(DFT)对腺嘌呤与 水分子团簇进行了优化和振动频率计算.

2 计算方法

应用 Gaussian09W 程序,在 B3LYP/6-311 + +G(d,p)水平上对腺嘌呤-水团簇 C₅H₅N₅ • (H₂O)_m(m=1~3)分子构型进行优化计算和频率 分析,计算结果显示无虚频,说明计算得到的结构 为稳定构型,频率计算采用 0.98 的修正因子进行 矫正. 氢键的拓扑性质分析采用 AIMALL (10.05.04 版本)软件.振动频率分析采用 veda4 (4.9.0.9 版本)软件.

3 结果与分析

3.1 构型分析

图 1 给出了在 B3LYP/6-311 + + G(d, p) 水 平下优化计算得到的 $C_5H_5N_5 \cdot (H_2O)_m (m = 1 \sim 1)$ 3) 分子的六种稳定几何构型以及一些主要的键 长. 在图 1AW₁(a) 和图 1AW₁(b) 构型中,腺嘌呤 分子和水分子并不在一个平面上,一个碳原子及其 相邻的两个氮原子与氧原子形成一个环状结构 氣 原子与每个腺嘌呤分子均共面. 在图 1AW₂(a) 和 图 1AW₂(b) 构型中,两个水分子与腺嘌呤分子都 不在同一个平面上 但两个氧原子与每个腺嘌呤分 子共面. 图 1AW₂(a) 中,两个氧原子和一个碳原 子及其相邻的氮原子共同形成一个环状结构。图 1AW₂(b) 中,两个氧原子分别与一个碳原子及其 相邻的氮原子形成环状结构 ,两个水分子并不关于 腺嘌呤分子对称.在图 $1AW_3(a)$ 和图 $1AW_3(b)$ 构 型中 三个水分子与腺嘌呤分子都不在同一个平面 上 但三个氧原子与每个腺嘌呤分子共面. 图 1AW₃(a) 中,一个碳原子及其相邻的两个氮原子 与氧原子形成一个环状结构 ,另外两个氧原子和一 个碳原子及其相邻的氮原子共同形成另一个环状 结构.图1AW₃(b)中,三个氧原子分别和一个碳 原子及其相邻的氮原子形成了三个环状结构.

对于团簇 $C_5H_5N_5 \cdot (H_2O)_m (m = 1 ~ 3)$ 的六 种稳定结构 图 $1AW_1$ 中两种结构的计算结果表明 二者的能量相差很小,后者仅比前者高 0.002 hartree 稳定性很接近.图 $1AW_2$ 和图 $1AW_3$ 中,两种 结构的能量差也很小,图 $1AW_2$ 中后者比前者高 0.0058 hartree,图 $1AW_3$ 中前者比后者高 0.0002 hartree,说明二者的稳定性也非常接近.从图中还 可以看出 随着水分子数目的增加,腺嘌呤以及水 分子团簇的稳定结构的能量值在不断的减小.

3.2 电子密度拓扑分析

为了考察 X - H…Y 键(X = O,N; Y = O,N), 我们利用 AIMALL 软件,在 B3LYP/6-311++G (d,p)水平下对 H…Y 键进行了电子密度拓扑分 析. 根据 Bader^[11]提出的"分子内原子(AIM)"理 论,一个分子电子密度分布的拓扑性质取决于电子 密度的梯度矢量场 $\nabla \rho(r)$ 和 Laplacian 量 $\nabla \rho(r)$. 电 子密度 $\rho(r)$ 在三维空间的三个方向上的二阶导数 构成了电子密度的 Hessian 矩阵,该矩阵的本征值 个数为3 并且满足 $\nabla \rho = \lambda_1 + \lambda_2 + \lambda_3$, λ_i 为该点处 电子密度的 Hessian 矩阵本征值. 当 Hessian 矩阵 三个本征值一正两负时,称之为键临界点(BCP), 用(3,-1) 表示; 当 Hessian 矩阵三个本征值一负 两正时 称之为环鞍点(RCP) ,用(3,+1) 表示 ,表 明存在一个环形结构. 键临界点处的 $\rho(r)$ 通常用 来描述键的强度 ,一般来说 $\rho(r)$ 越大 ,该化学键的 强度越强. Laplacian 量 $\nabla \rho(r)$ 通常用来描述化学 键的性质. Bader 理论还提出了判断原子间相互 作用的性质的方法: 当 $\nabla \rho < 0$ 时, 分子内的原子形 成共价键; 当 $\nabla \rho$ >0 时 ,会形成离子键、氢键或范 德瓦尔斯力. Lipkowski^[12]等人进一步提出了判断 氢键存在的实用的方法 即在 X—H…Y 体系中 ,H ···Y 间存在键临界点 其电子密度 ρ 和它的 Laplacian 量√ρ 应该分别存在 0.002 ~ 0.035 和 0.024 ~0.139 a. u. 范围内.

图 1AW₁(a) 稳定几何构型的拓扑性质如表 1. 在 表 1 中, H2…O1、H7…N2 的电子密度值 ρ 分别为 0.02006、0.02741 au $\sqrt[r]{\rho}$ 的值分别为 0.07791、0.08519 a. u.,在氢键的正常范围内,证明了 N4—H2…O1、 O1—H7…N2 氢键的存在.而H7…N2 的电子密度 ρ 大于 H2…O1 而且 H7…N2 的键长为 1.975 Å 比 H2 …O1(2.053 Å) 的键长小 说明 O—H…Y 之间的氢键 比 N—H…Y 强.另外 电子密度的拓扑性质分析出 现了一个六元环,其环临界点参数再一次证明了 H2 …O1、H7…N2 原子之间的相互作用.

在表1中,结构C₅H₅N₅•H₂O团簇中N4—H2 的电子密度比单体腺嘌呤的电子密度小,O1—H7 的电子密度比水分子的电子密度小,说明在形成 N4—H2…O1和O1—H7…N2氢键后,N4—H2和 O1—H6键变弱,键长变长,其伸缩振动频率发生 了红移.

图 $1AW_2(a)$ 稳定几何构型的拓扑性质分析如

表 2. 在表 2 中 ,H2····O2 和 H6····N2 的电子密度值 ρ 分别为 0. 03420 和 0. 03437 a. u. , $\nabla^{\rho}\rho$ 的值分别 为 0. 11351 和 0. 09885 a. u. ,在氢键的正常范围 内. 电子密度的拓扑性质分析出现了一个八元环.

图 1AW₂(a) 团簇中 N4—H2 的电子密度比单体腺嘌呤的电子密度要小,01—H6 的电子密度比 水分子的电子密度小,说明在形成 N4—H2…O2 和

表 1 图 1 中 AW₁(a) 在 B3LYP/6-311 + + G(d, p) 水平下得到的键临界点和环鞍点的拓扑参数

Table 1 Topological parameters of the bond critical points (BCP) and ring critical points (RCP) for $AW_1(a)$ in the Fig. 1 at the B3LYP/6 - 311 + + G(d, p) level

	()	17				
		ρ	$ abla^2 ho$	$oldsymbol{\lambda}_1$	λ_2	λ_3
			BCP			
$\mathrm{C}_5\mathrm{H}_5\mathrm{N}_5 \bullet \mathrm{H}_2\mathrm{O}$	H2…01	0. 02006	0. 07791	-0.02393	-0.02303	0. 12487
	H7…N2	0. 02741	0. 08519	-0.03623	-0.03489	0. 15629
	N4—H2	0. 32914	- 1. 75317	- 1. 30161	- 1. 25668	0.80512
	01—H7	0. 34347	-2.39048	- 1. 71752	- 1. 68081	1.00784
$\rm C_5H_5N_5$	N4—H2	0. 33031	- 1. 62603	- 1. 26233	-1.21217	0. 84848
H_2O	01—H7	0. 34956	- 2. 28970	- 1. 63721	- 1. 59521	0. 94272
			RCP			
	C1 N2 H7 O1 H2 N4	0. 00859	0.04625	-0.00632	0. 01793	0.03464

表 2 图 1 中 AW₂(a) 在 B3LYP/6 - 311 + + G(d, p) 水平下得到的键临界点和环鞍点的拓扑参数

Table 2 Topological parameters of the bond critical points (BCP) and ring critical points (RCP) for $AW_2(a)$ in the Fig. 1 at the B3LYP/6 – 311 + + G(d, p) level

		ρ	$ abla^2 ho$	λ_1	λ_2	λ_3
			BCP			
$C_5H_5N_5 \cdot 2H_2O$	H2…02	0.03420	0. 11351	-0.05398	-0.05070	0. 21819
	H6…N2	0. 03437	0. 09885	-0.06121	-0.05866	0. 21872
	H9—01	0. 03870	0. 12724	-0.06214	-0.06027	0. 24965
	N4—H2	0. 31645	- 1. 70291	- 1. 25782	- 1. 21765	0. 77256
	01—H6	0. 32889	-2.26444	- 1. 64482	- 1. 61176	0. 99214
	02—H9	0. 33512	-2.33572	- 1. 69094	- 1. 65709	1.01231
$\rm C_5H_5N_5$	N4—H2	0. 31996	- 1. 51489	- 1. 20051	-1.15221	0. 83784
$2H_2O$	H9—01	0.03780	0. 13611	-0.06049	-0.05873	0. 25532
	01—H6	0. 33746	-2.19761	- 1. 57010	- 1. 53217	0. 90465
	02—H9	0. 33983	-2.3118	- 1. 65865	-1.62118	0.96800
			RCP			
	C1 N2 H6 O1 H9 O2 H2 N4	0.00274	0. 01435	- 0. 00179	0. 00678	0. 00936

01—H6…N2 氢键后,N4—H2 和 01—H6 键变弱, 键长变长,其伸缩振动频率发生了红移。

我们还发现在表 2 中, 团簇中 O1—H9 的电子 密度为 0.03870 a.u.,比氢键的正常范围要大,而 且比水分子中的电子密度大,说明在团簇中可能形 成了比氢键更强的共价键.

图 1AW₃(b) 稳定几何构型的拓扑性质分析如 表 3. 在表 3 中,H1…O2、H4…O1、H5…O3、H7… N4、H8…N3 和 H10…N2 的电子密度值 ρ 分别为 0. 02149、0. 01925、0. 02523、0. 03105、0. 02681 和 0. 03254 a. u. ,∇ρ 的值分别为 0. 08360、0. 07180、 0.08991、0.09009、0.08403 和 0.09580 a. u.,在氢 键的正常范围内,并出现了两个六元环和一个七元 环.团簇中 N1—H1、N5—H4 和 N5—H5 的电子密 度比单体腺嘌呤的电子密度小,O1—H6、O2— H11 和 O3—H8 的电子密度比水分子的电子密度 小 说明在形成 N—H…O 和 O—H…N 氢键后, N—H 和 O—H 键变弱,键长变长,其伸缩振动频 率发生了红移.

对比表1和表2,在表1中H2…01的电子密度为0.02006 a.u.比表2中H2…02的电子密度(0.03420 a.u.)小并且表1中H7…N2的电子密

度比表 2 中 H7 ··· N2 的电子密度小,说明了团簇 C₅H₅N₅ • 2H₂O 中的氢键 N—H···O 和 O—H····N 的强度比团簇 C₅H₅N₅ • H₂O 中的氢键 N—H···O 和 O—H···N 的强度大; 对比表 2 和表 3 ,表 3 中的 H···O 和 H···N 的电子密度也比表 2 中的电子密度 要小;对比表1与表3 其中 H····O 和 H····N 的电子 密度大小差不多. 经过以上对比说明了水分子连 在一起与腺嘌呤分子形成的团簇中的氢键的强度 比水分子分开与腺嘌呤分子形成的团簇的氢键的 强度要大的多.

表 3 图 1 中 AW₃(b) 在 B3LYP/6-311 + + G(d, p) 水平下得到的键临界点和环鞍点的拓扑参数 Table 3 Topological parameters of the bond critical points (BCP) and ring critical points (RCP) for AW₃(b) in the Fig. 1 at the B3LYP/6-311 + + G(d, p) level

		ρ	$\nabla^2 ho$	λ_1	λ_2	λ_3
			BCP			
$C_5H_5N_5 \cdot 3H_2O$	H1…02	0.02149	0. 08360	-0.02646	-0.02550	0. 13556
	H4…01	0.01925	0.07180	-0.02312	-0.02146	0. 11639
	Н5…03	0.02523	0. 08991	-0.03483	-0.03311	0. 15785
	H7…N4	0.03105	0. 09009	- 0. 04292	-0.04139	0.17440
	H8…N3	0. 02681	0.08403	-0.03509	-0.03378	0. 15290
	H10…N2	0.03254	0. 09580	-0.04636	-0.04500	0. 18714
	N1—H1	0. 32803	- 1. 75879	- 1. 30080	- 1. 25699	0.79900
	N5—H4	0. 33132	- 1. 70543	- 1. 29253	-1.23748	0. 82458
	N5—H5	0. 32823	- 1. 71656	-1.28849	- 1. 23445	0. 80639
	01—H7	0. 34277	-2.37564	- 1. 71019	- 1. 67404	1.00859
	02—H8	0.03439	-2.39551	- 1. 72071	- 1. 68392	1.00912
	03—H10	0.34115	-2.37278	- 1. 71069	- 1. 67538	1.01329
$\mathrm{C}_5\mathrm{H}_5\mathrm{N}_5$	N1—H1	0. 32946	- 1. 61565	- 1. 25694	-1.20685	0. 84814
	N5—H4	0. 33154	- 1. 60048	- 1. 26260	- 1. 19594	0.85805
	N5—H5	0. 32936	- 1. 57600	- 1. 24695	- 1. 18058	0. 85155
$3H_2O$	01—H7	0. 34889	-2.27386	- 1. 62779	- 1. 58573	0. 93965
	02—H8	0. 34994	- 2. 29297	- 1. 63956	- 1. 59747	0. 94407
	03—H10	0. 34804	-2.26618	- 1. 62227	- 1. 58043	0. 93652
			RCP			
	C5N5H4 O1H7N4	0. 01014	0.04722	-0.00865	0. 02097	0.03490
	C3N3H8 O2H1N1	0. 00868	0. 04692	- 0. 00640	0. 01899	0.03433
	C2N2H10 O3H5N5 C5	0. 00587	0. 02805	-0.00416	0.00974	0. 02247

3.3 红外振动光谱分析

图 2 给出了在 B3LYP/6 – 311 + + G(d, p) 理 论水平计算得到的团簇 AW_n($n = 1 \sim 3$)的最稳定 结构的红外光谱. 经图可以看到 ,腺嘌呤分子的红 外振动光谱中存在的典型振动峰在团簇 AW_n($n = 1 \sim 3$)中几乎都有对应 ,但是 ,振动的的频率和强 度都发生了一定的变化. 从图中还可以看到 ,团簇 AW_n($n = 1 \sim 3$)的最稳定结构的红外光谱主要分 布在四个区域内: $I(0 \sim 500 \text{ cm}^{-1})$, $II(500 \sim 1000 \text{ cm}^{-1})$, $III(1000 \sim 1700 \text{ cm}^{-1})$, $IV(3150 \sim 3900 \text{ cm}^{-1})$. 团簇 $AW_n(n = 1 \sim 3)$ 的振动强度较大谱峰均分布在第 IV 区域内,而且,每条谱峰基本上都是由多个振动模式叠加而成的,几乎没有单一的振动模式,我们对团簇的最稳定结构的红外光谱中的部分特殊吸收峰进行分析.

利用 veda4 程序对 $C_5H_5N_5 \cdot (H_2O)_m (m=0 \sim m)$

B3LYP/6 - 311 + + G(d, p) level

3) 的振动频率进行模式指认. 腺嘌呤分子中部分 振动频率和模式指认如下表所示:

表4 腺嘌呤分子中部分振动频率和模式指认

Table 4 Potential energy distribution (PED) analysis and scaled vibrational frequencies (in $\rm cm^{-1}$) of C₅H₅N₅

ω (scaled)	PED
	Stretch($\rm N_2$ – $\rm C_1$) [22%] + Stretch($\rm N_4$ – $\rm C_1$) [10%] +
725	bend (C_3 – N_1 – C_4) $\mbox{[11\%]}$ + bend (C_1 – N_4 – C_5)
	[17%]
1242	– Stretch (N_2 – C_4) $\mbox{[}11\%$] + Stretch (N_3 – C_2) $\mbox{[}24\%$]
	– bend($\rm H_4$ – $\rm N_5$ – $\rm C_3)$ [25%] + bend($\rm N_5$ – $\rm C_3$ – $\rm N_1)$
	[10%]
1327	– Stretch ($\rm N_2$ – $\rm C_1$) [10%] + Stretch ($\rm N_2$ – $\rm C_4$) [34%]
	– Stretch ($\rm N_1~-~C_4)~$ [17%] + Stretch ($\rm N_3~-~C_2$)
	[10%]
3648	Stretch($N_4 - H_2$) [100%]

由表 4 得出的振动频率 725 cm⁻¹、1242 cm⁻¹、 1327 cm⁻¹和 3648 cm⁻¹与文献 [7]中利用密度泛 函理论(DFT)方法得到的振动频率 713 cm⁻¹、1228 cm⁻¹、1317 cm⁻¹和 3589 cm⁻¹相一致.

当腺嘌呤分子中振动频率为 725 cm⁻¹时,在 AW_n ($n = 1 \sim 3$) 中对应的振动频率分别为 727 cm⁻¹、729 cm⁻¹和 723 cm⁻¹; 当腺嘌呤分子中振动 频率为 1242 cm⁻¹时 $_{AW_{n}}(n = 1 \sim 3)$ 中对应的振 动频率变为1245 cm⁻¹、1247 cm⁻¹和1277 cm⁻¹; 当 腺嘌呤分子中振动频率为 1327 cm⁻¹时 AW_{a} (*n* = 1~3) 中对应的振动频率变为 1330 cm⁻¹、1331 cm⁻¹和1340 cm⁻¹; 当腺嘌呤分子中振动频率为 3648 cm⁻¹时,AW₁中对应的振动频率变为3505 cm⁻¹和 3543 cm⁻¹,AW,中对应的振动频率变为 3245 cm⁻¹和 3306 cm⁻¹, AW, 中对应的振动频率 变为 3486 cm⁻¹、3492 cm⁻¹和 3549 cm⁻¹. 由此可 以看出,当腺嘌呤分子中振动频率为725 cm⁻¹时, $AW_n(n=1 \sim 2)$ 中对应的振动频率发生了蓝移, AW3 中对应的振动频率发生了红移. 当腺嘌呤分 子中振动频率为 1242 cm⁻¹和 1327 cm⁻¹时,AW, (n=1~3)中对应的振动频率均发生了蓝移.当 腺嘌呤分子中振动频率为 3648 cm⁻¹时 AW_{n} (*n* = 1~3) 中对应的振动频率均发生了红移. 可以得 出团簇中氢键 O-H…N 中 H 的伸缩振动对腺嘌 呤分子产生了一定影响 使其对应的振动频率发生 了蓝移;氢键 N─H…O 中 H 的伸缩振动使得腺嘌 呤分子中对应的伸缩振动频率发生了红移.

考虑到水溶剂的影响时 腺嘌呤分子中的振动 频率变为 724 cm⁻¹ AW_n ($n = 1 \sim 3$) 中对应的振动 频率变为 778 cm⁻¹、783 cm⁻¹和 796 cm⁻¹; 腺嘌呤 分子中的振动频率为 1236 cm⁻¹ ,AW_n($n = 1 \sim 3$) 中对应的振动频率变为 1485 cm⁻¹、1455 cm⁻¹和 1378 cm⁻¹; 腺嘌呤分子中的振动频率为 1329 cm⁻¹ AW_n(n=1~3) 中对应的振动频率变为 1877 cm⁻¹、1496 cm⁻¹和 1531 cm⁻¹; 腺嘌呤分子中的振 动频率为 3633 cm⁻¹ 在 AW₁ 中对应的振动频率变 为 3267 cm⁻¹ 在 AW, 中对应的振动频率变为 209 cm⁻¹、518 cm⁻¹、1817 cm⁻¹和 1853 cm⁻¹,在 AW₂ 中对应的振动频率变为 3257 cm⁻¹. 腺嘌呤分子中 的振动频率为 724 cm⁻¹、1236 cm⁻¹和 1329 cm⁻¹ 时 $AW_n(n=1 \sim 3)$ 中对应的振动频率均发生了蓝 移;腺嘌呤分子中的振动频率为3633 cm⁻¹时,AW, $(n=1 \sim 3)$ 中对应的振动频率均发生了红移.从中 也可以看出 在水溶剂的影响下 腺嘌呤分子的振动 频率相比不在水溶剂里时变小从而产生了红移.

4 结 论

本文利用密度泛函理论对腺嘌呤分子与水分 子团簇在 B3LYP/6-311 + + G(d, p) 水平下进行 优化、得到了六种稳定几何构型. AIM 分析的结果 显示,团簇结构中除了形成经典氢键 O-H…N 外 还存在非经典氢键 N-H····O 的作用. O-H··· N氢键的形成使得 O—H 之间的键长变长,键的强 度变弱,伸缩振动频率变小,产生了红移.氢键 N-H…O的形成使得 N-H 之间的键长变长,键 的强度变小,伸缩振动频率发生红移.在团簇中还 发现了可能比氢键更强的共价键。对团簇序列 $C_5H_5N_5$ · (H₂O) (m = 0 ~ 3) 进行了红外振动光 谱分析 利用 veda4 程序对团簇 C₅H₅N₅・(H₂O) (m=0~3)进行了振动频率的模式指认,并对部分 振动频率进行了比较.由氢键 O-H…N 影响产生 的伸缩振动频率都比对应的腺嘌呤本身的伸缩振 动频率要大,产生了蓝移;由氢键 N—H…O 影响 而产生的伸缩振动频率比对应的腺嘌呤本身的伸 缩振动频率要小 产生了红移.

参考文献:

[1] Peifer W R , Coolbuagh M T , Ganey J F. Observation of "magic number" in the population distributions of the $(NH_3)_{n-1}NH_2^+$ and $(NH_3)_nH^+$ cluster: implications for cluster ion structure ions [J]. J. Chem. Phys. 1989,91:6684.

- [2] Morgan S , Keesee R G , Castleman A W. Jr. Reactions of methanol clusters following mutliphoton ionization [J]. J. Chem. Soc. ,1989 , 111: 3841.
- [3] Wei S, Tzeng W B, Castleman A W Jr. Kinetic energy release measurements of a mmonia cluster ions during metastable decomposition and determination of cluster ion binding energies [J]. J. Chem. Phys. , 1990 , 92: 332.
- [4] Chung - Phillips A, Kimberly A J. Ab initio studies of critical conformations in ethane, methylamine, methanol, hydrazine , hydroxylamine , and hydrogen peroxide [J]. J. Chem. Phys. , 1995 , 102: 7080.
- [5] Snyder E M, Purnell J, Wei S, et al. Real - time dynamics of a mmonia clusters excited through the A state: formation of the protonated cluster ions [J]. J. Chem. Phys. , 1996 , 207: 355.
- Li X M , Zhang L B , Zhou L Z , et al. Theory study of [6] the structures and IR of $(C_5H_5N)_n(H_2O)_m(n=1 \sim$ 2, $m = 1 \sim 4$) clusters [J]. Spectroscopy and Spectral Analysis., 2014, 30: 1085(in Chinese) [李晓明,张 来斌,周留柱,等. 吡啶-水团簇(C,H,N)。 (H₂O)_m(n=1~2,m=1~4)结构和红外光谱的理 论研究[J]. 光谱学与光谱分析, 2014, 30: 1085]
- [7] Colarusso P , Zhang K Q , Guo B J , et al. The infrared spectra of uracil, thymine, and adenine in the gas phase [J]. Chem. Phys. Lett. , 1997 , 269: 39.
- Hrouda V, Florian J, Hobza P. Structure, energetics [8] and harmonic vibrational spectra of the adenine thymine and adenine* - thymine* base pairs: gradient nonempirical and semiempirical study [J]. J. Chem. Phys. , 1993 , 97: 1542.
- [9] Gu J , Leszczynski J. A DFT study of the water - assisted intra molecular proton transfer in the tautomers of adenine [J]. J. Phys. Chem. A , 1999 , 103: 2744.
- [10] Dobado J A, Molina. Adenine - hydrogen peroxide system: DFT and MP2 investigation [J]. J. Phys. Chem. A , 1999 , 103: 4755.
- [11] Bader R F. A quantum theory of molecular structure and its applications [J]. Chem. Rev. , 1991 , 91: 893.
- [12] Lipkowski P , Grabowski , S J , Robinson T L , et al. Proporties of the C-H····H dihydrogen bond: an ab initio and topological analysis [J]. J. Phys. Chem. A, 2004 ,108: 10865.