当前位置:课程学习>>第三章>>知识讲解>>文本学习>>知识点二

第三章 数学核心素养解析



知识点二:符号意识


符号对于数学来说是特有的。它既是数学的语言,也是数学的工具,更是数学的方法。数学符号的功能特性是多方面的:它具有抽象性,这使得数学能够超越于数学对象的具体属性,而从形式化的角度进行逻辑推演,并一步步把数学引向深入;它具有明确性,某一数学符号的意义一旦被赋予,它就在这确定的意义下被运用,不会含糊,不会产生歧义,从而带来数学极大的严谨性;它具有可操作性,数学过程往往体现于数学符号之间的“运算”。针对这种“运算”的算法是形式化的,“几乎是自动化的,不需要每次都从头做起”。(迪多内《论数学的进展》,载《数学史译文集》上海科技出版社,1980年版,126页);此外数学符号还具有简略性和通用性等特点。正因为如此,数学符号在数学发展中起着举足轻重的作用。法国数学家让﹒迪内多在《论数学的进展》一文中将“引进好的符号”作为促进数学发展的重要原因之一。学生在数学学习过程中,将无时无刻不与符号打交道,对数学符号的语言、工具、方法的功能和上述特性的认识事实上构成了学生数学学习的重要内容,学生掌握数学符号、运用数学符号能力的培养也成为重要的教学目标。

一、对符号意识的认识

从一般意义上说,所谓符号就是针对具体事物对象而抽象概括出来的一种简略的记号或代号。数字、字母、图形、关系式等等构成了数学的符号系统。符号意识(Symbol sense)是学习者在感知、认识、运用数学符号方面所作出的一种主动性反应,它也是一种积极的心理倾向。

数学符号最本质的意义就在于它是数学抽象的结果。比如,在数与代数中,数来源于对数量本质(多与少)的抽象,而数字就成为能够以大小排序的符号。与数的符号表示一样,关于数的运算知识也是从生活实践中加以抽象,逐渐形成法则。这一过程中很重要的一步是使用字母这一符号来表示抽象运算,这使得“可以像对‘数’那样对‘符号’进行运算,并且,通过符号运算得到的结果是具有一般性的”(史宁中《数学思想概论》,第一辑,地34页)。这表明,数学符号不仅是一种表示方式,更是与数学概念、命题等具体内容相关的、体现数学基本思想的核心概念,发展学生的符号意识是数学教学的重要目标。

二、《标准》中符号意识所包含的内容

此次标准修订,将原来的“符号感”改为了“符号意识”,这两个称谓就其英文表述来看没有变化,而中文表述将“感”改为“意识”应该说其意义与课程目标的价值取向和数学符号的本质意义要求更加吻合。在数学学习中,无论是概念、命题学习还是问题解决,都涉及用符号去表征数学对象,并用符号去进行运算、推理,得到一般性的结论。在这个过程中,数学符号对于学习者来说主要的还不是潜意识、直觉或感觉,而是一种主动的使用符号的心理倾向。所以用“意识”更准确些。

《标准》对符号意识的表述有这样几层意思值得我们体会:

1.能够理解并且运用符号表示数、数量关系和变化规律

《标准》中的这个要求针对的是符号表示,它有两层意思:一是能够理解符号所表示的意义;二是能够运用符号去表示数学对象(数、数量关系和变化规律等)。

每一个数学符号都有它特定的含义,如、、、分别表示特定的运算意义,、、﹤、﹥则表示数学对象之间的某种关系。使学生理解符号的意义是数学学习中的最基本的要求,也是符号意识的最基本要求。由于数学符号是一种特殊的语言,对数学符号的理解也有其固有的特点和要求:因为符号具有一定抽象度,对符号的认识和理解就不应是形式上的,而应是实质上的,即应从抽象的符号本身看到其所表征的准确的数学意义;由于符号具有压缩信息的功能,所以对符号的意义的理解就不应是片面的,而应是全面的、完整的、特别将符号语言转换为我们所熟悉的生活语言时,应该抓住其数学本质予以解读和表征;由于数学符号具有概括性和一般性特征,所以对它的认识和理解又不应是孤立的、僵化的,比如应注意符号与符号之间的关联(如“”与“”之间的关系),也应注意同一符号的多重意义的理解(如既可表示矩形面积与长、宽关系,也可表示平行四边形面积与底、高的关系,也可表示路程与时间、速度的关系,也可表示总价与单价、数量之间的关系,还可表示半圆周长与圆周率、半径的关系,……)。

对数学符号不仅要“懂”,还要会“用”。运用符号表达数学对象就是“用”符号的重要方面。这里的数学对象主要指数、数量关系和变化规律,它们在各个学段都有自己的特定的要求。关于用符号表达数学对象这里着重指出两点:一是要注意义务教育阶段整个学习过程中,学生用符号表达数学对象是一个由简单到复杂,由相对具体到相对抽象的过程。比如用数字符号表示现实中的多少,用单一的运算符号表示数字运算关系,其抽象度显然不及用字母代替数及用字母表示数量关系,后者对前者来说是一个阶段性的变化。而用符号关系式或一定的数学模式语言去表示特定的数学变化规律则又更为抽象和复杂。这表明关于数学表达的符号意识的发展是一个逐渐积累变化的过程。二是数学符号的表达是多样化的,比如关系式、表格、图像等等都是表达数量关系和变化规律的符号工具,有时,即使是同一数学对象也可采用多种符号予以表达。而多种符号表达方式之间也是可以转换的。符号表达上的这些特点值得我们在教学中关注。

比如这样一个例题:在下列横线上填上合适的数字,字母或图形,并说明理由。

1,1,2;1,1,2;,,;

A,A,B;A,A,B;,,;

通过观察规律,使一学段学生能够感悟到:对于有规律的事物,无论是用数字还是字母或图形都可以反映相同的规律,只是表达形式不同而已。

2.知道使用符号可以进行运算和推理,得到的结论具有一般性

这一点很重要。从某种意义上说这正是符号意识作为一种“意识”需要强化的。这一要求的核心是基于运算和推理的符号“操作”意识。由于运算和推理是数学活动最重要的基本形式,所以《标准》的这一要求是希望在各学段学习中,都加强学生在逻辑法则下使用符号进行运算、推理的训练,这涉及到的类型较多,如对具体问题的符号表示、变量替换、关系转换、等价推演、模型抽象及模型解决等等。

3.使学生理解符号的使用是数学表达和进行数学思考的重要形式

数学表达是学生在解决具体问题时必须采用的方式,数学表达实质上就是以数学符号作为媒介的一种语言表达。通过培养学生的符号意识,发展学生的数学表达能力成为当今课堂关注的目标。

比如这样一个问题:“某书定价8元,如果一次购买10本以上,超过10本部分打八折。分析并表示购书数量与付款金额之间的关系。”显然,购书数量与付款金额之间是呈函数关系(分段函数),为了解决问题的方便,我们可以分别采用函数关系式、列表、作出图象等多种符号表达方式来表示这一具体问题。

发展符号意识最重要的是运用符号进行数学思考,我们不妨把这种思考称为“符号思考”,这种思考是数学抽象、数学推理、数学模型等基本数学思想的集中反映,是最具数学特色的思维方式。

举一个简单的例子:“房间里有4条腿的椅子和三条腿的凳子共16个,如果椅子腿数和凳子腿数加起来共有60个,那么有几个椅子和几个凳子?”如果学生没有经过专门的“鸡兔同笼”解题模式的思维训练,他完全可以使用恰当的符号进行数学思考,找到解题思路。如可以用表格分析椅子数的变化引起凳子数和腿总数的变化规律,直接得到答案;也可采用一元一次方程或一元二次方程组的、关于字母的思考方式来加以解决。

三、关于学生符号意识的培养

1.在各学段紧密结合概念、命题、公式的教学,培养学生的符号意识

概念、命题公式等是数学课程内容中的重要组成部分,它们常常是数学教学的重点,而它们又和数学符号的表达和使用密切相关。正因为如此,《标准》在学段目标和各学段内容标准中都提出了具体要求。如:“理解符号﹤、=、﹥的含义,能使用符号和词语描述万以内数的大小”,“认识小括号”。(一学段);“认识中括号”“在具体情境中能用字母表示数”,“结合简单的时间情境,了解等量关系,并能用字母表示”,“能用方程表示简单情境中的等量关系”(二学段);“能分析简单问题中的数量关系,并用代数式表示”,“通过用代数式、方程、不等式、函数等表述数量关系的过程,体会模型思想,建立符号意识”(三学段)。

2.结合现实情境培养学生的符号意识

一方面,尽可能通过实际问题或现实情境的创设,引导、帮助学生理解符号以及表达式、关系式的意义,或引导学生对现实情境问题进行符号的抽象和表达;另一方面,对某一特定的符号表达式启发学生进行多样化的现实意义的填充和解读。这种建立在现实情境与符号化之间的双向过程,有利于增强学生数学表达和数学符号思维的变通性、迁移性和灵活性。

3.在数学问题解决过程中发展学生的符号意识

符号意识更多地表现为以学生为主体的一种主动用符号的意识,因此,符号意识的培养仅靠一些单纯的符号推演训练和模仿记忆是难以达到应有的效果的。引导学生经历发现问题,提出问题(这实际上需要运用符号抽象和表达问题)、分析问题、解决问题(这实际上是使用符号进行运算、推理和数学思考)的全过程,在这一过程中积累运用符号的数学活动经验,更好地感悟符号所蕴涵的数学思想本质。逐步促进学生符号意识得到提高。


请同学们继续学习