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Dear editor,
The problem of underwater localization has drawn
considerable attention in recent years [1]. How-
ever, it is quite challenging due to a lack of mea-
surements and the unknown sound propagation
speed (SPS), even with sensor nodes (SN) having
known positions. In practice, sufficient measure-
ments might not be available due to the harsh un-
derwater environment or the sparse deployment of
SNs. To cope with this issue, Emokpae et al. [2]
proposed an angle-of-arrival (AOA) based localiza-
tion scheme, where the measurements are collected
from both line-of-sight (LOS) and sea-surface re-
flected non-LOS (SR-NLOS) links. Nonetheless,
employing AOA measurements requires antenna
arrays, which are normally very costly and are in-
convenient. In water, the SPS is subject to unpre-
dictable or changing factors such as temperature,
pressure, salinity and depth, which means that it
is practically impossible for the SPS to be known
a priori. To overcome this problem, Zheng et
al. [3] designed a three-step weighted least squares
(WLS) algorithm, which jointly estimates the tar-
get position and the SPS. This method is based
on the time-difference-of-arrival (TDOA) measure-
ments, though only from the LOS links. In addi-
tion, another drawback is that the nonlinear op-
eration in its last step, i.e., the square root, may
cause a large estimation bias, resulting in consid-
erable performance deterioration.

We propose an improved underwater localiza-

tion approach that utilizes multipath components
(MPCs) and assumes an unknown SPS. After
cross-correlating the acoustic signals between both
LOS and SR-NLOS links, we will obtain much
more TDOA measurements, on which our pro-
posed underwater localization method is based.
Note that the path detection problem is beyond
the scope of this study. Owing to the notable
contributions of [2], we can reasonably build our
work upon it. Our approach employs the two-step
WLS estimation, the idea of which is to reduce
the bias and avoid any non-linear operation in the
second step. The simulation results show that the
localization performance is improved significantly
and is very close to the Cramér-Rao lower bound
(CRLB).

Model and methodology. Assume a three-
dimensional (3D) underwater network, which con-
sists ofM SNs at known positions si = [xi, yi, zi]

T,
i = 1, . . . ,M , and a source target at an unknown
position x = [x, y, z]T. Here, we consider shallow
water environments, where the SPS is reasonably
assumed to be an unknown constant.

Owing to the cylindrical symmetry around the
z axis, we can project the 3D localization problem
onto the plane that includes both the SN and the
target, as shown in Figure 1. The SR-NLOS path
can equivalently be viewed as an LOS link to the
mirrored position of the physical SN w.r.t. the sea
surface, which we will refer to as the virtual SN
located at si+M = [xi, yi, 2h− zi]

T, where h is the
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sea depth. If the assumption of ideal specular re-
flection is violated, the virtual SN will be subject
to a position error, we leave this for future study.
Now, we have 2M − 1 TDOA measurements as

D̂i = (di − d1)/c+ εi, i = 2, . . . , 2M, (1)

where di
∆
= ‖si − x‖ is the Euclidean distance be-

tween the i-th SN (physical or image) and the tar-
get, c denotes the unknown propagation speed,
and εi is the additive noise resulting from the
TDOA estimation error, which is assumed to be an
identical independent distributed Gaussian noise
with distribution N (0, σ2

i
). In short, our problem

involves estimating the target position from the
TDOA measurement set {D̂i} in the presence of
an unknown c.

The proposed method has two stages. The first
stage takes the squares of the measurements and
introduces nuisance variables to obtain a prelimi-
nary estimate. The second stage improves the es-
timation accuracy by exploiting the relationship
between the target position and the nuisance vari-
ables. These two stages are described in detail
below.

Re-arranging (1) and squaring both sides of the
equation result in

(di + cεi)
2 = (cD̂i + d1)

2, i = 2, . . . , 2M

⇒ 2(s1 − si)
Tx− c2D̂2

i
− 2D̂icd1

= ||s1||
2 − ||si||

2 − 2cdiεi − c2ε2
i
. (2)

Then, by collecting only the noise terms on the
left-hand side of the equation and stacking both
sides into vectors, we reformulate (2) as

e1 = h1 −G1ϕ1, (3)

where ϕ1 =
[

x, c2, cd1
]T

and

e1 = 2









(c2D̂2 + cd1)ε2
...

(c2D̂2M + cd1)ε2M









,

h1 =









sT1 s1 − sT2 s2
...

sT1 s1 − sT2Ms2M









,

G1 =









2(s1 − s2)
T −D̂2

2 −2D̂2

...
...

...

2(s1 − s2M )
T −D̂2

2M −2D̂2M









.

For convenience of calculation, we plug the re-
lation di = cD̂i + d1 − cεi into the noise term and

ignore the resulting second-order noise term ε2
i
.

Minimizing the weighted square norm of e1 yields
the first-step WLS solution [4]

ϕ̂1 = min
ϕ1

‖e1‖
2
2 = (GT

1 W1G1)
−1GT

1 W1h1, (4)

where W1 is the weight matrix given by

W1
−1 = E(e1e

T
1 ) = B1QBT

1 . (5)

Here, B1 = 2diag([. . . , c2D̂i + cd1, . . .]), Q =
diag([. . . , σ2

i
, . . .]), i = 2, . . . , 2M , and diag(∗) is

a diagonal matrix with the elements of ∗ on its
diagonal. According to the WLS theroy [4], the
covariance matrix of ϕ̂1 can be approximated as
cov(ϕ̂1) = (GT

1 W1G1)
−1 for a sufficiently small

measurement noise. Note that calculating W1 re-
quires the true values of c and x; however, they
are unknown beforehand. Therefore, W−1

1 = Q is
first considered for calculating an initial estimate
from (4), which will be used in (5) for an improved
version of W1, thus leading to a better estimate of
ϕ1.

We still need to consider the relation between
the elements in ϕ1 in the second stage of our
method, where we refine the estimate ϕ̂1 from the
first stage. For this, we express the first stage
estimate as ϕ̂1 = ϕ1 + ∆ϕ̂1, where ∆ϕ̂1 is the
approximate zero-mean estimation error with its
covariance matrix cov(ϕ̂1). Defining [·]i as the i-
th element of a vector, we start with the relation
[ϕ̂1]5 = cd1+[∆ϕ̂1]5. After rearranging the above
relation, squaring both sides, and then ignoring
the second-order error terms, we obtain

[ϕ̂1]5
2−2[ϕ̂1]5[∆ϕ̂1]5=c2

(

‖x‖2+‖s1‖
2−2sT1 x

)

.

Substituting x = [ϕ̂1]1:3 − [∆ϕ̂1]1:3 and c2 =
[ϕ̂1]4 − [∆ϕ̂1]4 into the above equation gives

b =
[

aT
1 , a2, a3

]

∆ϕ̂1, (6)

where the parameters in (6) are defined as

b
∆
= [ϕ̂1]5

2 − [ϕ̂1]4‖s1 − [ϕ̂1]1:3‖
2,

a1
∆
= 2[ϕ̂1]4(s1 − [ϕ̂1]1:3), (7)

a2
∆
= −‖s1 − [ϕ̂1]1:3‖

2, a3
∆
= 2[ϕ̂1]5.

The key idea of our refinement stage is to es-
timate the position estimation error ∆ϕ̂1 result-
ing from the first stage solution ϕ̂1. Recalling
that ∆ϕ̂1 has zero mean under small noise con-
dition, we have the following equations according
to Sorenson’s approach [5]:

03×1 = [∆ϕ̂1]1:3 − [∆ϕ̂1]1:3,

0 = [∆ϕ̂1]5 − [∆ϕ̂1]5.
(8)
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Combining (6) and (8) yields the second step
equation

e2 = h2 −G2ϕ2, (9)

where h2 = [b,01×4]
T and

e2 = B2∆ϕ̂1, B2 =







01×3 a2 a3

−I3 03×1 03×1

01×3 0 −1






,

G2 =

[

a1 I3 03×1

0 01×3 1

]T

, ϕ2 =

[

[∆ϕ̂1]1:3
[∆ϕ̂1]5

]

.

Minimizing the weighted square norm of e2
yields the second-stage WLS solution

ϕ̂2 =
(

GT
2 W2G2

)−1
GT

2 W2h2. (10)

The weighting matrix W2 is defined as W−1
2 =

E(e2e
T
2 ) = B2cov(ϕ̂1)B

T
2 . Finally, the position

estimate is x̂ = [ϕ̂1]1:3 − [ϕ̂2]1:3.
Simulations and results. In our simulation,

there are 5 physical SNs located at s1 = [−500, 0,
10]T m, s2 = [0,−500, 50]T m, s3 = [500, 0,
80]T m, s4 = [0, 500, 120]T m, and s5 = [300, 0,
100]T m, and the target is positioned at x =
[200, 100, 10]T m. The sea depth is h = 200 m
and the sound propagation speed is set as c =
1500 m/s. The noise variances σ2

i
, i = 2, . . . , 2M,

are set to be identical, termed as σ2. The root
mean-square error (RMSE) and estimation bias
are employed as the performance metrics.

In the first simulation, we compare the RMSE
performances of the proposed method, the three-
step solution [3], and the classical two-stage
weighted least squares (TSWLS) method [6], as
well as the CRLB. si, i = 1, . . . , 4 are chosen as
the physical SNs. The TSWLS method is not ca-
pable of providing an estimate of the sound speed.
In order to emphasize the effect of SPS error on
the localization accuracy, we use c + ∆c m/s as
the sound speed estimate of the TSWLS method,
where ∆c = 0, 2, 4 m/s in this simulation. In addi-
tion, it should be noted that the TSWLS method
uses only LOS measurements.

It can be seen from Figure 2 that our proposed
method attains the CRLB and significantly out-
performs the other methods. Without using the
NLOS measurements, the RMSE performance of
the TSWLS method is no better than that of our
proposed method even with perfect knowledge of
the sound speed (i.e., ∆c = 0 m/s). In Figure 3,
it can be seen that the estimation bias of the pro-
posed method is better suppressed than that of
other methods.

In the second simulation, we study the effect
of the number of measurements on the proposed
method. In addition to the three step method, we
also implement the TSWLS method with the use of
NLOS information (TSWLS-NLOS) for compari-
son [7]. si, i = 1, . . . , 5 are chosen as the physi-
cal SNs. The noise standard derivation is set to
be σ = 1 ms and the sound speed error in the
TSWLS-NLOS method is set to be ∆c = 4 m/s.
Figure 4 shows that the superiority of the proposed
method over the other methods becomes more
significant when the number of measurements is
small. This has important practical significance
for underwater localization, where the measure-
ment collection is heavily hindered by the harsh
underwater environment.

Conclusion. We have developed an improved
underwater localization method that utilizes the
signals received from both LOS and SR-NLOS
links. This method does not require a priori knowl-
edge about the sound propagation speed in an un-
derwater environment. Simulation results show
that the proposed method is superior to the exist-
ing methods, and its estimation performance can
attain the CRLB.
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