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• The distance between regions and human mobility behavior are considered in the epidemic spreading.
• The epidemic threshold is theoretically calculated.
• The results show that wherever the virus originates from, the final infection size is similar.
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a b s t r a c t

The distance between different regions has a lot of impact on the individuals’ mobility
behavior. Meanwhile, the individuals’ mobility could greatly affect the epidemic propa-
gation way. By researching the individuals’ mobility behavior, we establish the coupled
dynamic model for individual mobility and transmission of infectious disease. The basic
reproduction number is theoretically obtained according to the next-generation matrix
method. Through this study, we may get that the stability state of the epidemic system
will be prolonged under a higher commuting level. The infection density is almost the
same in different regions over a sufficiently long time. The results show that, due to
the individual movement, the origin of virus can only speed up or delay the outbreak of
infectious diseases, however, it have little impact on the final infection size.

© 2017 Published by Elsevier B.V.

1. Introduction

Human behavior is the driving force behind many complex social phenomena. The understanding of human behavior
has always been the focus of sociology, psychology and economics. Quantitative analysis of human behavior is an important
research topic of modern science [1–4]. Studying the human behavior could not only improve the human’s understanding
of their own behaviors, but improve the human’s understanding for the social system.

Human society has always been in the long struggle with infectious diseases. Many of infectious diseases including Ebola
virus, pestilence, influenza, plague, AIDS, cholera, SARS and avian flu spread over many areas of the world, and kill tens
of thousands of people [5–7]. Therefore, researchers try their best to cover the epidemic spreading mechanism and find
the best way to control the epidemic. The wanton transmission of infectious diseases will not only endanger the health of
mankind itself, but bring great disaster to the people’s livelihood [8–10]. Large-scale outbreak of each infectious disease in
the history of mankind has brought physical and psychological suffering to people, while having a great hindrance on the
development of human society [11]. In addition, the deterioration of the natural environment and the rapid development
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of social factors do not only provide opportunities for the transmission of existing and new infectious diseases, but lead
to the emergence of the virus or bacteria variations, which will seriously endanger human life [12]. With the in-depth
exploration of human behavior, some studies that involve the relationship between human behavior and transmission of
infectious disease have been proposed in succession [13–15]. However, the ability to fully understand human behavior
and study its impact on transmission of infectious disease remains an important project. By this study, to some extent,
we could strengthen the human’s recognition for behavioral evolution and formulate some significant strategies to curb
the epidemic spread. Scholars have adopted a variety of theoretical methods to study the epidemic spreading, such as the
percolation theory, mean field theory, game theory, stochastic processes, cellular automaton, etc. [16–20]. As the small-
world network and the scale-free network are discovered, scholars have proposed a number of epidemic spreadmodels that
perform on those complex networks. Themost classicmodels include: (1) themean field theory proposed by Pastor-Satorras
and Vespignani [21]; (2) the percolation model proposed by Newman [22]; (3) the discrete probability model proposed by
Wang et al. [23]. Kihong investigate the generalized epidemic process onmodular networks, the results show that the system
exhibits a bond-percolation type continuous phase transition for weak social reinforcement [24]. Samue explore the effect
of a prudent adaptive behavior on disease transmission. Their results indicate the effects of the prudent could accelerate
spread [25]. Han research the epidemic process on activity-driven modular networks, their obtain that the final infected
density in the original-infected-community shows different trends with the change of the response strength of vaccination
and the spreading rate [26].

Based on the above analysis, this paper studies the influence of individual mobility on epidemic spreading. Firstly, a
coupled dynamic model between individual mobility behavior and transmission of infectious diseases is established. Then,
the next-generation matrix method is used to calculate the basic reproduction number. Finally, we perform the epidemic
spreading on network to study the outbreak time and final epidemic size. The structure of this paper is as follows: in the
second section, the new epidemic model is presented, and the basic reproduction number is theoretically calculated. The
commuting level, infection rate and recovery rate are numerical studied in the third section. Finally, Section 4 gives the
conclusion.

2. Epidemic spreading model

In this section,we examine the effect of regional distance and humanmobility behavior on epidemic spreading. According
to the actual connectivity between regions, each region is regarded as a node in the network, and the people in this region
are evenly mixed. That is to say, an individual in the same place has the same probability to communicate with any other
individuals. The individuals in different places can access to any place of the connected networks. However, according to the
actual situation, the probability for each individual to stay in different places is different. Here, the commuting form of an
individual between place i and place j is set as pij =

1
(1+dij)α

, which means that the probability for individuals in place i to
stay in (access) the place j is pij. dij refers to the shortest distance between the place i and j; α ≥ 0 is a parameter, indicating
the commuting level. To some extent, the commuting level indicates the degree that an individual would like to stay in the
original region. In general, people would stay in the original region all the time while α = +∞. Without loss of generality,
pij is normalized as follows:

p̄ij = pij(
∑

j

pij)−1
= (1 + dij)−α(

∑
j

(1 + dij)−α)−1 (1)

It can be easily obtained from the formula (1) that
∑

jp̄ij = 1, i = 1, 2, . . .. And we may get that there is almost no
possibility for the individuals in the i place to stay in the j place, when dij → ∞.

Due to the fact that individuals may be repeatedly infectedwith some flu viruses, we here consider the SIRS epidemiolog-
ical transmission model, where S represents susceptible persons, I represents infected persons, and R represents recovery.
Based on individual’s movement behavior, the coupled epidemic spreading dynamic model is established as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSi
dt

= −

n∑
j=1

[Si infected in community j] + γiRi

dIi
dt

= −µiIi +
n∑

j=1

[Si infected in community j]

dRi

dt
= µiIi − γiRi

(2)

Where, Si, Ii and Ri refer to the susceptible person, infected person and recovery person in the i place, respectively.
[Si infected in place j] indicate the infection density of susceptible persons who comes from i and are infected in the place j;
µi refers to the recovery rate in the place i; γi refers to the recovery rate in the place i, namely the probability that recovery
person becomes susceptible person again due to loss of immunity to infectious disease.
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Based on the individuals mobility behavior in different places, we can obtain the expression of the density of susceptible
persons who comes from i and are infected in the place j:

[Si infected in place j] = βjp̄ijSi

∑n
k=1 p̄kjIk∑n
k=1 p̄kjNk

(3)

Where βj indicates the probability that all susceptible persons who stay in the place j are infected; p̄ijSi refers to the
susceptible density who comes from i and stay in the j;

∑n
k=1p̄kjIk indicates the total infections in the place j;

∑n
k=1p̄kjNk

indicates the total density in the place j, and Nk indicates the population density of the place.
Let S = (S1, S2, . . . , Sn)T , I = (I1, I2, . . . , In)T , P̄ = [p̄ij]n×n = [(1+ dij)−α(

∑
j(1+ dij)−α)−1

]n×n, β = diag(β1, β2, . . . , βn),
N = diag(N1,N2, . . . ,Nn) and µ = diag(µ1, µ2, . . . , µn). Thus, the formula (3) is changed as follows:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dS
dt

= −SP̄β(P̄N)−1P̄I

dI
dt

= −µI + SP̄β(P̄N)−1P̄I

dR
dt

= −µI

(4)

Based on the formula (4), the disease-free equilibrium point Q 0
= (S01 , S02 , . . . , S

0
n , 0, 0, . . . , 0, 0) can be calculated.

Then, the next-generation matrix algorithm is used to calculate the basic reproduction number of the presented model, as
shown below:

ℜ
0

= ρ(M) (5)

Where ρ(M) refers to spectral radius ofM,M = S0P̄β(P̄N)−1P̄µ−1, S0 = (S01 , S02 , . . . , S
0
n ).

In order to obtain the basic reproduction number, it is critical to calculate the spectral radius of the next-generation
matrix. However, the matrix M is arbitrary, it is impossible to use strict and accurate theoretical analysis. Therefore, we
deduce some special expressions of the basic reproduction number. In general, for any two places i and j, there is always an
path to connect the two regions in the real world, namely 0 ≤ dij < ∞. People from those two places can communicate
with each other. Thus, we just discuss how the value of α affects the epidemic spreading. The epidemiological spreading
threshold for a place i is discussed below according to different cases.

(i) When α = 0, p̄ij ≡ n−1, 1 ≤ i, j ≤ n. It can be obtained from formula (2) that

dIi
dt

= −µiIi +
n∑

j=1

βjp̄ijSi

∑n
k=1 p̄kjIk∑n
k=1 p̄kjNk

= −µiIi +
1
n

n∑
j=1

βjSi

∑n
k=1 Ik∑n
k=1 Nk

(6)

Thus, the basic reproduction number isℜ
0

=
∑n

i=1

∑n
k=1βkNi

nµi
∑n

k=1Nk
. Whenℜ

0 > 1, the epidemic diseasewill spread throughout
the place.

(ii) When 0 < α < ∞, it can be obtained from formula (2) that

dIi
dt

= −µiIi +
n∑

j=1

βjp̄ijSi

∑n
k=1 p̄kjIk∑n
k=1 p̄kjNk

= −µiIi +
n∑

j=1

βjp̄ijSi

∑n
k=1, k̸=i p̄kjIk∑n
k=1 p̄kjNk

+ Ii
n∑

j=1

βjp̄ijSi
p̄ij∑n

k=1 p̄kjNk

> −µiIi + Ii
n∑

j=1

βjp̄ijSi
p̄ij∑n

k=1 p̄kjNk

(7)

Let ℜ
0
i = µ−1

i Ni
∑n

j=1βjp̄ij
p̄ij∑n

k=1 p̄kjNk
, we further obtain:(

dIi
dt

/Ii

)
|Ii=0 = (ℜ0

i − 1)µi = Ni

n∑
j=1

βj

(
(1 + dij)−α(

∑
j(1 + dij)−α)−1

)2∑n
k=1(1 + dkj)−α(

∑
j(1 + dkj)−α)−1Nk

− µi (8)

When ℜ
0
i > 1, ( dIidt /Ii)|Ii=0 > 0, Thus, I(∞) > 0, Thus when ℜ

0
i > 1, there are always persons infected with epidemic

disease in place i.
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Fig. 1. Epidemiological transmission diagram that includes three places i, j and k. According to the distance among various communities, the mobile
probability matrix P̄ could be calculated when α = 1.

Fig. 2. Change chart of infected person density ρ I over time in different places and at different commuting levels. At the initial time, the infectious disease
emerges in place i, and the infection rate, recovery rate and restoration rate of each place are: β1 = β2 = β3 = 0.3, µ1 = µ2 = µ3 = 0.1, γ1 = γ2 = γ3 =

0.2. (a) commuting level α = 1; (b) commuting α = 10.

(iii) When α = ∞, p̄ii = 1, p̄ii = 0, i ̸= j, which indicates that there is no communication among individuals in the place.
It can be obtained according to formula (2) that

dIi
dt

= −µiIi +
n∑

j=1

βjp̄ijSi

∑n
k=1 p̄kjIk∑n
k=1 p̄kjNk

= −µiIi + βi(Ni − Ii)
Ii
Ni

(9)

The basic reproduction number ℜ
0
i =

βi
µi

can be easily obtained. That is to say, when ℜ
0
i > 1, there are always persons

infected with epidemic disease in place i.

3. Simulation results

Next, this paper performs numerical analysis of the epidemic spreading in three places (as shown in Fig. 1). Assuming that
the number of population in three places i, j and k is 10 000 at the initial time. It can be seen from Fig. 1 that the geographical
position of community i and community k is symmetrical. Thus, the outbreak of disease in place i and place j is studied in the
following. Assuming that at the initial time, there are 1% of the individuals are infected. ρ I

i , ρ
I
j and ρ I

k respectively represent
the infected person density in regions i, j and k.

It can be seen from Fig. 2, that when the commuting level α is different, there is a great difference in the outbreak time
in different regions. When α is small, it can be seen from Fig. 2(a) that the density of infected persons in the two places j and
k that are far away from the initial outbreak place of the infectious diseases reaches its peak at a short time. The infection
densities of such two places are almost the same. However, when α is large enough, it can be seen from Fig. 2(b) that the
density of infected persons in the two places j and k which are far away from the initial outbreak place of the infectious
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Fig. 3. Relationship between infection rate and transmission scale at different times. At the initial time, the infectious disease emerges in place i, and the
recovery rate and restoration rate of each place are µ1 = µ2 = µ3 = 0.1, γ1 = γ2 = γ3 = 0.2. Commuting level α = 10. (a) The relationship between β

and ρ I (t) at t = 100; (b) The relationship between β and ρt (t) at t → ∞.

Fig. 4. Relationship between commuting level and infection density at different times. At the initial time, the infectious disease emerges in place i, and the
infection rate, recovery rate and restoration rate of each place are β1 = β2 = β3 = 0.2, µ1 = µ2 = µ3 = 0.1, γ1 = γ2 = γ3 = 0.2. (a) The relationship
between α and ρ I (t) at t = 50; (b) The relationship between α and ρ I (t) at t = 500.

diseases reaches its peak at a long time, and the infection density in place j is closer to the initial outbreak place. In addition,
by comparing Fig. 2(a) and (b), we could find that the higher commuting level leads a longer time to reach stability state.

During the transmission of an infectious disease, it is necessary to focus on both the final number of infections and the
number of infections in time. This can help us better to control the epidemic spreading. Assuming that the infection rate
in each place is the same, the following sections will study the relationship between the infection rate β and the size of
infectious diseases at different time. In general, the greater the infection rate is, the more likely the individual is infected.
By comparing Fig. 3(a) and (b), it can be found that with the increase of the infection rate, the infection density in three
places tends to be stable at a shorter time. When the commuting level α is larger, the individuals are reluctant to leave their
hometown for another place. Thus, it can be found from Fig. 3(a) that the time for the epidemic size reaching peak is different
in the three places. In addition, Fig. 3(b) illustrates that when the infection rate β is less than the threshold βc , there will be
no infected person in the last.

Commuting level α reflects whether the individual’s desire to stay in the original place. A higher commuting level reveals
the increasing tendency of individuals to stay in the original place of residence. Fig. 4 shows the variation of infection density
ρ I (t) in different places is observed at different time points. Fig. 4(a) presents that as the commuting level increases, there
is a large difference in the infection density among different places. When the observation time is short, the probability that
the infected person leaves the original place of residence is less, that reduce the risk of infection in other places in the initial
stage. However, it can be seen from Fig. 4(b), when the time is longer enough, the infection density is almost the same among
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Fig. 5. The change of the final infection density ρ I
T (∞) throughout the entire place over the changing infection rate and recovery rate at different commuting

levels α. At the initial time, the infectious disease emerges in place i, and the recovery rate is γ1 = γ2 = γ3 = 0.1. (a) α = 1; (b) α = 10.

Fig. 6. Ratio of the time when the infection density of each place reaches 1% at different commuting levels α. At the initial time, the infectious disease
emerges in place i, and the recovery rate and restoration rate of each place are µ1 = µ2 = µ3 = 0.1, γ1 = γ2 = γ3 = 0.2. (a) Infection rate:
β1 = β2 = β3 = 0.3; (b) Infection rate: β1 = β2 = β3 = 0.5.

different places. When commuting level α is larger, and if there are infected persons in a place, these infected people will
stay here for a long time, which results in a significant increase of the infection density in this place.

Next, we investigate the change of the final infection density with the change of infection rate β and recovery rate µ at
different commuting levels α. By comparing Fig. 5(a) and (b), it can be found that under different commuting levels andwith
a given infection rate β and recovery rate µ, the final infection density in all places is almost identical. In addition, according
to Fig. 5(a) and (b), it can be found that in the plane β − µ, the infection density is almost 0 blow the diagonal line. As the
infection rate increases, the final infection density ρ I

T (∞) gradually increases.
Assuming that the infection density of the place i is 1% at the initial time T1 = 1, the ratio between T1 and the time when

the infection density of other places reaches 1% is studied then. T1 and T2 represent the time when the infection density
reaches 1% in the places j and k. It can be seen from Fig. 6(a) and (b) that, almost when α = 0, the minimum of T2/T1
and T3/T1 is reached. When α = 0, the probability that individuals stay in any one place is the same, which maximize the
efficiency by which the infected people arrive at any one place and stay in this place. Therefore, the time when the infection
density reaches 1% in each place is minimized finally. In addition, by comparing Fig. 6(a) and (b) it can be found that with the
increase of infection rate, the time when the infection density reaches its expected value in each place is greatly reduced.

In the following, we focus on the change of final infection density ρ I
T (∞) under different recovery rates γ . It can be seen

from Fig. 7 that with the increase of the recovery rate γ , the final infection density ρ I
T (∞) gradually increases. In addition,

at the same recovery rate γ , with the increase in infection rate β , the final infection density ρ I
T (∞) is gradually improved.

Even if there are individuals who are willing to stay in the original residence place, the whole regions will be influenced by
the infectious disease. According to theoretical analysis, the basic reproduction number ℜ

0
i is not related to the recovery
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Fig. 7. Final infection density of all places at different recovery rates. At the initial time, the infectious disease emerges in place i, and the recovery rate and
commuting level of each place are µ1 = µ2 = µ3 = 0.1, α = 1. Here, β1 = β2 = β3 = β .

Fig. 8. The effect of the original infected regions on the final infection density with different recovery rates γ . ρ I
i (∞) and ρ I

j (∞) respectively refer to the
total infection density of i and j, either of which is an initial infected place. The infection rate, recovery rate and commuting level are: β1 = β2 = β3 = 0.3,
µ1 = µ2 = µ3 = 0.2, α = 5. (a) The relationship between the final total infection density ρ I

i (∞) and the recovery rate γ ; (b) The relationship between
the final infection density ρ I

j (∞) and the recovery rate γ . (c) The relationship between the final total infection density ρ I
i (∞) and ρ I

j (∞).

rate γ . However, it can be seen from Fig. 7 that if the recovered individual is likely to be infected again, the final number of
infected persons in the entire areas will be greatly improved. Thus, the recovery rate has a big impact on the final epidemic
size. However, if infected individuals are cured and they will not be infected again, the number of infected people in the
entire area will be greatly reduced.

Next, the impacts of infectious disease that outbreaks in different places on the final infection density are compared.
ρ I
i (∞) and ρ I

j (∞) represent the final infection density in place i and j, respectively. Either of which is an initial infected
place. It can be seen from Fig. 8 that, at different recovery rates γ , the outbreak of initial infectious disease in different
places almost has no impact on the final infection density. In other words, once the entire region is connected, the individual
can travel between sub-regions. If there are no effective measures to be taken to prevent the epidemic spreading, the final
epidemic size is almost kept at the same level. (It can be seen from Fig. 8(c) that the relationship between ρ I

j (∞) and ρ I
i (∞)

is linear.) Thus, as long as the individuals’ travels, the difference in initial infected places can only speed up or delay the
epidemic outbreak.

4. Conclusions

To find an effective strategy to curb the epidemic spreading is a problem that should be solved quickly. Considering the
human behavior and the regional distance, in this paper we establish an coupled epidemic spreading model. Using the next-
generation matrix method, the basic reproduction number is theoretically calculated. The results show that the epidemic
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will widely spread if the basic reproduction number ℜ
0
i > 1. Moreover, a higher commuting level will prolong the time

to achieve the stability state. In addition, as the commuting level increases, the total density of infected individuals in each
regions are different at a fixed observation time. However, when the time is sufficiently long, the infection density of all
places is almost the same. Therefore, the difference of original infected places could only speed up or delay the outbreak of
infectious disease.

Acknowledgment

This research was supported by the National Nature Science Foundation of China (Nos. 71690242, 71774070, 71473108,
71681260402).

References

[1] A. Nishi, N.A. Christakis, Human behavior under economic inequality shapes inequality, Proc. Natl. Acad. Sci. 112 (2015) 15781–15782.
[2] M. Perc, Chaos promotes cooperation in the spatial prisoner’s dilemma game, Europhys. Lett. 75 (6) (2006) 841–846.
[3] V.S. Subrahmanian, K. Srijan, Predicting human behavior: The next frontiers, Science 355 (2017) 489.
[4] C.C. Carlos, B. Derdei, R.M. Benjamin, Perspectives on the role of mobility, behavior, and time scales in the spread of diseases, Proc. Natl. Acad. Sci. 113

(2016) 14582–14588.
[5] Y.Q. Hu, S. Havlin, H.A. Makse, Conditions for viral influence spreading through multiplex correlated social networks, Phys. Rev. X 4 (2014) 021031.
[6] V.S. Samuel, A. Antoine, H.D. Laurent, The effect of a prudent adaptive behaviour on disease transmission, Nat. Phys. 12 (2016) 1042–1047.
[7] K. Kai, Infectious disease new bird flu strain brings death and questions, Science 354 (2016) 1363–1364.
[8] D.D. Manlio, G. Clara, A.P. Mason, A. Alex, The physics of spreading processes in multilayer networks, Nat. Phys. 12 (2016) 901–906.
[9] E.C. Holmes, G. Dudas, A. Rambaut, K.G. Andersen, The evolution of Ebola virus: Insights from the 2013-2016 epidemic, Nature 538 (2016) 193–200.

[10] Bergthaler Andreas, Menche Joerg, The immune system as a social network, Nat. Immunol. 18 (5) (2017) 481–482.
[11] M. Genois, C.L. Vestergaard, C. Cattuto, A. Barrat, Compensating for population sampling in simulations of epidemic spread on temporal contact

networks, Nature Commun. 6 (2015) 8860.
[12] N.R. Faria, A. Rambaut, M.A. Suchard, G. Baele, The early spread and epidemic ignition of HIV-1 in human populations, Science 346 (2014) 56–61.
[13] B. Fotouhi, M.K. Shirkoohi, Temporal dynamics of connectivity and epidemic properties of growing networks, Phys. Rev. E. 93 (1) (2016) 012301.
[14] M. Starnini, S.R. Pastor, Temporal percolation in activity-driven networks, Phys. Rev. E. 89 (2014) 032807.
[15] N. Perra, B. Goncalves, S.R. Pastor, Activity driven modeling of time varying networks, Sci. Rep. 2 (2012) 469.
[16] B. Kotnis, J. Kuri, Stochastic analysis of epidemics on adaptive time varying networks, Phys. Rev. E. 87 (2013) 062810.
[17] M.P. Van, R. Bovenkamp, Non-markovian infection spread dramatically alters the susceptible infected susceptible epidemic threshold in networks,

Phys. Rev. Lett. 110 (2013) 108701.
[18] C. Stegehuis, R. Hofstad, J.S.H. Leeuwaarden, Epidemic spreading on complex networks with community structures, Sci. Rep. 6 (2016) 29748.
[19] S.R. Pastor, C. Castellano, P. Mieghem, A. Vespignani, Epidemic processes in complex networks, Rev. Mod. Phys. 87 (2015) 925–979.
[20] J.R. Artalejo,M.J.L. Herrero, Stochastic epidemicmodels:Newbehavioral indicators of the disease spreading, Appl.Math. Comput. 38 (2014) 4371–4387.
[21] S.R. Pastor, A. Vespignani, Epidemic spreading in scale-free networks, Phys. Rev. Lett. 86 (2001) 3200–3203.
[22] M.E.J. Newman, D.J. Watts, Scaling and percolation in the small-world network model, Phys. Rev. E. 60 (1999) 7332–7342.
[23] Y.Wang, D. Chakrabarti, C.Wang, Epidemic spreading in real networks: An eigenvalue viewpoint, in: Proceedings of the 22nd International Symposium

on Reliable Distributed Systems. 2003, pp. 25–43.
[24] C. Kihong, B. Yongjoo, K. Daniel, Generalized epidemic process on modular networks, Phys. Rev. E 89 (2014) 052811.
[25] V.S. Samuel, A. Antoine, H.D. Laurent, The effect of a prudent adaptive behaviour on disease transmission, Nat. Phys. 12 (2016) 1042–1047.
[26] D. Han, M. Sun, D.D. Li, Epidemic process on activity-driven modular networks, Physica A 432 (2015) 354–362.

http://refhub.elsevier.com/S0378-4371(17)31169-X/sb1
http://refhub.elsevier.com/S0378-4371(17)31169-X/sb2
http://refhub.elsevier.com/S0378-4371(17)31169-X/sb3
http://refhub.elsevier.com/S0378-4371(17)31169-X/sb4
http://refhub.elsevier.com/S0378-4371(17)31169-X/sb4
http://refhub.elsevier.com/S0378-4371(17)31169-X/sb4
http://refhub.elsevier.com/S0378-4371(17)31169-X/sb5
http://refhub.elsevier.com/S0378-4371(17)31169-X/sb6
http://refhub.elsevier.com/S0378-4371(17)31169-X/sb7
http://refhub.elsevier.com/S0378-4371(17)31169-X/sb8
http://refhub.elsevier.com/S0378-4371(17)31169-X/sb9
http://refhub.elsevier.com/S0378-4371(17)31169-X/sb10
http://refhub.elsevier.com/S0378-4371(17)31169-X/sb11
http://refhub.elsevier.com/S0378-4371(17)31169-X/sb11
http://refhub.elsevier.com/S0378-4371(17)31169-X/sb11
http://refhub.elsevier.com/S0378-4371(17)31169-X/sb12
http://refhub.elsevier.com/S0378-4371(17)31169-X/sb13
http://refhub.elsevier.com/S0378-4371(17)31169-X/sb14
http://refhub.elsevier.com/S0378-4371(17)31169-X/sb15
http://refhub.elsevier.com/S0378-4371(17)31169-X/sb16
http://refhub.elsevier.com/S0378-4371(17)31169-X/sb17
http://refhub.elsevier.com/S0378-4371(17)31169-X/sb17
http://refhub.elsevier.com/S0378-4371(17)31169-X/sb17
http://refhub.elsevier.com/S0378-4371(17)31169-X/sb18
http://refhub.elsevier.com/S0378-4371(17)31169-X/sb19
http://refhub.elsevier.com/S0378-4371(17)31169-X/sb20
http://refhub.elsevier.com/S0378-4371(17)31169-X/sb21
http://refhub.elsevier.com/S0378-4371(17)31169-X/sb22
http://refhub.elsevier.com/S0378-4371(17)31169-X/sb24
http://refhub.elsevier.com/S0378-4371(17)31169-X/sb25
http://refhub.elsevier.com/S0378-4371(17)31169-X/sb26

	How the distance between regional and human mobility behavior affect the epidemic spreading
	Introduction
	Epidemic spreading model
	Simulation results
	Conclusions
	Acknowledgment
	References


