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a b s t r a c t

We discuss the following two issues from the dynamics of interacting populations:

• (I) density waves for the case or negligible random fluctuations of the population
densities,

• (II) probability distributions connected to the model equations for spatially averaged
population densities for the case of significant random fluctuations of the independent
quantity that can be associated with the population density.

For the case of issue (I) we considermodel equations containing polynomial nonlinearities.
Such nonlinearities arise as a consequence of interaction among the populations (for the
case of large population densities) or as a result of a Taylor series expansion (for the case
of small density of interacting populations). By means of the modified method of the
simplest equation we obtain exact traveling-wave solutions of the model equations and
these solution. For the case of issue (II) we discuss model equations of the Fokker–Planck
kind for the evolution of the statistical distributions of population densities. We derive a
few stationary distributions for the population density and calculate the expected exit time
associated with the extinction of the studied population.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Since the famous paper on the properties of the Lorenz attractor [1] nonlinearities have been intensively studied in dif-
ferent areas of science and especially in biology [2]. Just a few other examples are [3] from optics, [4] from biomechanics, [5]
from solid state physics, [6,7] from fluidmechanics, [8,9] from time series analysis, etc. Population dynamics is a classic area
of application of nonlinear models [10,11]. In many cases the dynamics of interacting populations is studied by mathemat-
ical models consisting of equations that contain only time dependence of the population densities [12–14]. These models
are very useful for understanding the complex dynamics of the interacting populations but they do not account for two
important aspects of this dynamics: (I) the possible influence of spatial characteristics of the environment; and (II) the pos-
sible fluctuations of the population densities caused by different factors. Belowwe shall investigate two kinds of population
dynamics models that account for each of these effects. First of all we shall discuss the dynamics of spatially distributed
populations and this will be a continuation of our previous work [15,16]. Then we shall show that by appropriate averaging
the spatial model can be reduced to model in which the population densities depend only on the time. The models that
contain spatially averaged quantities are valid for arbitrary values of the densities of the interacting populations. The result
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of the action of the fluctuations is that instead of equations for the trajectories of the populations in the phase space of the
population densities we shall write and solve equations for the probability density functions of the population densities.

The organization of the paper is as follows. In Section 2 we introduce the model equations for a system of interacting
spatially distributed populations and discuss their traveling wave solutions. In Section 3 we discuss the influence of
fluctuations on the evolution of population densities of the model system of spatially averaged equations. The inclusion
of random fluctuations transforms the model system of deterministic nonlinear ODEs to a system of Langevin equations
which is further transformed to a system of Fokker–Planck equations for the evolution of the probability density functions
(p.d.f.s) of interacting populations.We discuss a few examples for stationary p.d.f.s that are attractors for the time dependent
p.d.f.s for the case of large times. A few expected exit times connected to extinction of populations are calculated too. A few
concluding remarks are summarized in Section 4. In addition to the main text of the paper there are four appendices that
are devoted to: (I) obtaining the model equations and their averaging; (II) the modified method of simplest equation used
to obtain the traveling-wave solutions; (III) description of a MAPLE program for obtaining the analytic form of the solution
for the coupled kink waves for the case of three interacting populations; and (IV) remarks on two observations connected
to the diffusion Markov processes and the Fokker–Planck equation.

2. Model equations and traveling waves

In this paper we shall consider model systems of nonlinear PDEs for N interacting populations as follows (for more
information about obtaining such models see Appendix A):

∂ρi

∂t
−

N
k=1

Dik
∂2ρk

∂x2
=

∞
n1=0

∞
n2=0

. . .

∞
nN=0

α(i)n1,n2,...,nNρ
n1
1 ρ

n2
2 . . . ρ

nN
N . (2.1)

For the case of one population the system (2.1) is reduced to the equation

∂ρ

∂t
− D

∂2ρ

∂x2
=

∞
n1=0

αn1ρ
n1 . (2.2)

Belowwe shall discuss nonlinear PDEs of the kind (2.2) but with polynomial nonlinearity of finite order. We shall show how
to obtain travelingwave kink solutions of such equations (if possible). For the lowest order of nonlinearity the corresponding
PDEs are very famous (Fisher equation if the polynomial nonlinearity is of second order or Kolmogorov–Petrovskii–Piskunov
equation if the polynomial nonlinearity is of third order). Many exact traveling wave solutions of these equations are
known: see for an example the paper [17] for the Fisher equation or the paper of Ma and Fuchssteiner [18] for the
Kolmogorov–Petrovskii–Piskunov equation. We note that the traveling wave kink solutions of the above class of equations
are closely connected to some singularities in the complex plane that play a significant role in the test for the presence
of the Painlevé property. An important part of this test is at the basis of the method of simplest equation (of which the
version called the modified method of the simplest equation is discussed in Appendix B). We shall obtain the solutions of
the studied nonlinear PDEs by themodifiedmethod of the simplest equation. Because of the connection of this methodwith
the methodology of the Painlevé test the exact kink solutions obtained below are the most general kind of traveling wave
single kink solutions of the corresponding nonlinear PDEs. All other single travelingwave kink solutions should be particular
cases of the solutions obtained by the method of the simplest equation or should be the same. What will be important for
us is to illustrate the methodology in the text below and not to pretend that all of the obtained solutions are new ones.

2.1. Traveling waves: case of one population

Let us discuss the simplest case of one population described by Eq. (2.2). First we introduce the traveling-wave coordinate
ξ = x − vt where v is the velocity of the wave. In addition we shall assume that the polynomial nonlinearity in Eq. (2.2) is
up to order L. We rescale the coefficients in Eq. (2.2) as follows:

DĎ
= −D/v; αĎ

n1 = αn1/v. (2.3)

Then Eq. (2.2) becomes:

dρ
dξ

+ DĎ d
2ρ

dξ 2
+

L
n1=0

αĎ
n1ρ

n1 = 0. (2.4)

Below we shall obtain the exact solution of Eq. (2.4) by application of the modified method of the simplest equation for
obtaining exact solutions of nonlinear PDEs. For more details on the modified method of simplest equation see Appendix B.

Proposition 1. The balance equation for Eq. (2.4) for the case when the Riccati equation is used as the simplest equation is
P(L−1) = 2where P is the largest power in the polynomial for ρ(ξ) constructed on the basis of the solutionsΦ(ξ) of the Riccati
equation.
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Proof. We apply the methodology from Appendix B to Eq. (2.4). We constrict a solution as finite series

ρ(ξ) =

P
i=0

ai[Φ(ξ)]i, (2.5)

whereΦ(ξ) is a solution of the Riccati equation

dΦ
dξ

= aΦ2
+ bΦ + c, (2.6)

i.e.,

Φ(ξ) = −
b
2a

−
θ

2a
tanh


θ(ξ + ξ0)

2


, θ2 = b2 − 4ac. (2.7)

The substitution of Eq. (2.5) in Eq. (2.4) and the balance of the largest powers of Φ that arise from the different terms of
Eq. (2.4) (these powers are P + 2 from the term d2ρ

dξ2
and PL from the term α

Ď
Lρ

L) lead to the balance equation

P(L − 1) = 2. � (2.8)

Thus we have the possibilities: P = L = 2 or P = 1; L = 3. Below we discuss these possibilities.

2.1.1. Case P = L = 2
In this case we shall obtain the exact traveling-wave solution of the equation

∂ρ

∂t
− D

∂2ρ

∂x2
= α0 + α1ρ + α2ρ

2, (2.9)

We apply the rescalings from Eq. (2.3) and formulate

Proposition 2. Suppose that the coefficient αĎ
0 =

625αĎ1
2
DĎ2−36

2500αĎ2D
Ď2 ≠ 0. Then the traveling wave solution of the kind Eq. (2.5) of

Eq. (2.9) obtained on the basis of the modified method of the simplest equation when the equation of Riccati is used as the simplest
equation is

ρ(ξ) =
75DĎ2b2 + 30DĎb − 3 + 25αĎ

1D
Ď

50αĎ
2DĎ

+
3[(25DĎ2b2 − 1)(5DĎb + 1)]

250αĎ
2cDĎ2

×

 b

2 25DĎ2b2−1
100cDĎ2

+
θ

2 25DĎ2b2−1
100cDĎ2

tanh

θ(ξ + ξ0)

2

−
3(25DĎ2b2 − 1)

5000αĎ
2c2DĎ3

×

 b

2 25DĎ2b2−1
100cDĎ2

+
θ

2 25DĎ2b2−1
100cDĎ2

tanh

θ(ξ + ξ0)

2


2

,

θ2 = b2 −
25DĎ2b2 − 1

25DĎ2
. (2.10)

Suppose that αĎ
0 = 0. Then the solution is

ρ(ξ) = −
36b2 + 60bαĎ

1 + 25αĎ
1
2

100αĎ
1α

Ď
2

+
(36b2 − 25αĎ

1
2
)(6b + 5αĎ

1)

600cαĎ
1α

Ď
2


b
2a

+
θ

2a
tanh


θ(ξ + ξ0)

2


−
(36b2 − 25αĎ

1
2
)2

14400cαĎ
1α

Ď
2


b
2a

+
θ

2a
tanh


θ(ξ + ξ0)

2

2

,

θ2 = b2 −
36b2 − 25αĎ

1
2

36
(2.11)

ξ0 is a constant of integration.
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Proof. As P = L = 2 then from Eq. (2.5) the solution will be of the kind

ρ(ξ) = a0 − a1


b
2a

+
θ

2a
tanh


θ(ξ + ξ0)

2


+ a2


b
2a

+
θ

2a
tanh


θ(ξ + ξ0)

2

2

. (2.12)

The substitution of Eq. (2.12) in Eq. (2.9) leads to a system of relationships for the parameters of the solution (the system is
of kind (B.4)):

6DĎa2a2 + α
Ď
2a

2
2 = 0,

aDĎ(a1a + 5a2b)+ a2a + α
Ď
2a1a2 = 0,

DĎ
[3a1ab + 4a2(2ac + b2)] + a1a + 2a2b + α

Ď
1a2 + α

Ď
2(2a0a2 + a21) = 0,

DĎ
[a1(2ac + b2)+ 6a2bc] + α

Ď
1a1 + 2αĎ

2a0a1 + a1b + 2a2c = 0,

α
Ď
0 + α

Ď
1a0 + α

Ď
2a

2
0 + a1c + DĎ(a1bc + 2a2c2) = 0. (2.13)

Nowwe have two possibilities: αĎ
0 ≠ 0 and αĎ

0 = 0 (which is closer to the classical population dynamicsmodels that usually
do not possess terms independent of the population density).
Case αĎ

0 ≠ 0
For this case the solution of the system (2.13) is as follows:

α
Ď
0 =

625αĎ
1
2
DĎ2

− 36

2500αĎ
2DĎ2

; a0 = −
75DĎ2b2 + 30DĎb − 3 + 25αĎ

1D
Ď

50αĎ
2DĎ

,

a1 = −
3[(25DĎ2b2 − 1)(5DĎb + 1)]

250αĎ
2cDĎ

; a2 = −
3(25DĎ2b2 − 1)

5000αĎ
2c2DĎ3

,

a =
25DĎ2b2 − 1

100cDĎ2
. (2.14)

and then we obtain the solution (2.10) of Eq. (2.9).
Case αĎ

0 = 0
For this case the solution of the system (2.13) is as follows:

DĎ
=

6

25αĎ
1

; a0 = −
36b2 + 60bαĎ

1 + 25αĎ
1
2

100αĎ
1α

Ď
2

,

a1 = −
(36b2 − 25αĎ

1
2
)(6b + 5αĎ

1)

600cαĎ
1α

Ď
2

; a2 = −
(36b2 − 25αĎ

1
2
)2

14400cαĎ
1α

Ď
2

,

a =
36b2 − 25αĎ

1
2

144c
. (2.15)

and then we obtain the solution (2.11) of Eq. (2.9). �

The obtained solutions describe kink waves that can be considered as traveling waves of change of the value of the
population density of the studied population. Suchwaves can describe the front ofmigration of a population. The appropriate
values of the boundary conditions ensure that ρ(ξ) is non-negative elsewhere (in order to achieve this the boundary
conditions simply have to ensure a positive value for the bottom of the kink). We note that the parameters of the solved
Eq. (2.9) areDĎ and αĎ

0, α
Ď
1, α

Ď
2 . The first relationship from Eq. (2.14) connects these four parameters. Then the solution (2.10)

does not hold for any values of parameters of Eq. (2.9) but only for these combinations that satisfy the above mentioned
relationship.

Let us discuss in a few words the problem of the boundary conditions of the obtained solutions. Theoretically for the
general case of solution (2.10) there are ten parameters and five relationships (2.13) among them. Thus there are five free
parameters. A few possibilities for boundary conditions are

ρ(+∞) = A1; ρ(−∞) = A2;

dρ
dξ


B1

= A3, (B1 > 0);
dρ
dξ


−B2

= A4, (B2 > 0);

d2ρ
dξ 2


+B3

= A5, (B3 > 0)
d2ρ
dξ 2


−B4

= A6, (B4 > 0);

· · · (2.16)
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Let us impose the boundary conditions ρ(+∞) = A1; ρ(−∞) = A2 on the solution given by Eq. (2.10). The result is that
there are two additional relationships that must be satisfied by the parameters of the solution. The relationships are as
follows

DĎ
=

6
25

1

α
Ď
1 + 2A1α

Ď
2

; α
Ď
1 = −α

Ď
2(A1 + A2). (2.17)

The second relationship can be written as follows: A2 = −(A1 + α
Ď
1/α

Ď
2) which means that if the parameters αĎ

1,2 of the
solved PDE are fixed and we also fix A1 then the boundary condition A2 cannot be arbitrary. For an example if A1 = 0 then
A2 = −α

Ď
1/α

Ď
2 . A few examples of the obtained nonlinear waves satisfying two boundary conditions are shown in Fig. 1.

2.1.2. Case P = 1; L = 3
In this case we shall obtain exact traveling-wave solutions of the equation

∂ρ

∂t
− D

∂2ρ

∂x2
= α0 + α1ρ + α2ρ

2
+ α3ρ

3, (2.18)

Proposition 3. The traveling wave solution of the kind Eq. (2.5) of Eq. (2.18) obtained on the basis of the modified method of the
simplest equation when the equation of Riccati is used as the simplest equation is

ρ(ξ) = a0 − a1


b
2a

+
θ

2a
tanh


θ(ξ + ξ0)

2


(2.19)

for the equation

∂ρ

∂t
− D

∂2ρ

∂x2
= −v

−3aa20D
Ďa1b + 2DĎa2a30 − aa20a1 − a31c + a0a21b + 2a0DĎa21ac + a0DĎa21b

2
− DĎa31bc

a21

− v
a21b + 2DĎa21ac + DĎa21b

2
− 6aa0DĎa1b + 6DĎa2a20 − 2aa0a1

a21
ρ

+ v
a(−3DĎa1b + 6DĎaa0 − a1)

a21
ρ2

− 2v
DĎa2

a21
ρ3 (2.20)

and

ρ(ξ) =

6DĎ(−2αĎ
3D

Ď)1/2b − 2αĎ
2D

Ď
+ (−2αĎ

3D
Ď)1/2 + 3(−2αĎ

3D
Ď)1/2DĎθ tanh


θ(ξ+ξ0)

2


6αĎ

3DĎ
(2.21)

for the equation

∂ρ

∂t
− D

∂2ρ

∂x2
= −

v

216αĎ
3
2
DĎ3


9bDĎ(−2αĎ

3D
Ď)3/2 + 27DĎ2(−2αĎ

3D
Ď)3/2b2 + 27DĎ3(−2αĎ

3D
Ď)3/2b3

+ 18(−2αĎ
3D

Ď)1/2DĎα3 + 24α2
2D

Ď2(−2α3DĎ)1/2 + 54(−2α3DĎ)1/2DĎ3α3b2

− 72(−2α3DĎ)1/2DĎ2α
Ď
1α

Ď
3 + 16αĎ

2
3
DĎ3

+ 18(−2αĎ
3D

Ď)1/2bDĎ2α
Ď
3

+ 54(−2αĎ
3D

Ď)1/2b3DĎ4α
Ď
3 + (−2αĎ

3D
Ď)3/2 − 72αĎ

1α
Ď
3D

Ď3α2


+ α1ρ + α2ρ

2
+ α3ρ

3, (2.22)

Proof. As P = 1; L = 3 then from Eq. (2.5) the solution will be of the kind Eq. (2.19) The substitution of Eq. (2.19) in
Eq. (2.18) leads to the following system of relationships for the parameters of the solution

2DĎa1a2 + α
Ď
3a

3
1 = 0

a1(3DĎab + α
Ď
2a1 + 3αĎ

3a0a1 + a) = 0

a1b + DĎa1(2ac + b2)+ 2αĎ
2a0a1 + α

Ď
1a1 + 3αĎ

3a
2
0a1 = 0

α
Ď
2a

2
0 + a1c + α

Ď
1a0 + α

Ď
3a

3
0 + DĎa1bc + α

Ď
0 = 0. (2.23)

We shall consider two possibilities. First we shall solve the system (2.23) with respect to αĎ
0,1,2,3. This means that the

coefficients a0,1 as well as the coefficients a, b, c of the Riccati equation will remain free and we can impose many boundary
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conditions on the solution. Thuswe shall investigate a small subclass of equations of kind Eq. (2.18)wherewe have a solution
withmany free parameters. Thenwe shall consider the case in which we shall keep asmany as possible of the parameters of
Eq. (2.18) free. The price for this will be that we shall have to impose a few relationships on the coefficients of the solutions.

Case 1: Solution of (2.23) with respect to αĎ
0,1,2,3

This solution is as follows

α
Ď
0 = −

−3aa20D
Ďa1b + 2DĎa2a30 − aa20a1 − a31c + a0a21b + 2a0DĎa21ac + a0DĎa21b

2
− DĎa31bc

a21

α
Ď
1 = −

a21b + 2DĎa21ac + DĎa21b
2
− 6aa0DĎa1b + 6DĎa2a20 − 2aa0a1

a21

α
Ď
2 =

a(−3DĎa1b + 6DĎaa0 − a1)
a21

α
Ď
3 = −2

DĎa2

a21
. (2.24)

Thus we arrive at solution (2.19) of Eq. (2.20).

Case 2: Solution of (2.23) with respect to a, a0, a1 and αĎ
0

The solution is as follows

a =
3DĎ2α3b2 + 2αĎ

2
2
DĎ

− 6αĎ
1α

Ď
3D

Ď
+ α

Ď
3

12cDĎ2α
Ď
3

a0 =

(3DĎb + 1)


−2αĎ
3DĎ − 2α2DĎ

6DĎα
Ď
3

a1 =


−2αĎ

3DĎ(3DĎ2α
Ď
3b

2
+ 2α2

2D
Ď
− 6αĎ

1α3DĎ
+ α

Ď
3)

12αĎ
3
2
cDĎ2

α
Ď
0 = −

1

216αĎ
3
2
DĎ3


9bDĎ(−2αĎ

3D
Ď)3/2 + 27DĎ2(−2αĎ

3D
Ď)3/2b2 + 27DĎ3(−2αĎ

3D
Ď)3/2b3

+ 18(−2αĎ
3D

Ď)1/2DĎα3 + 24α2
2D

Ď2(−2α3DĎ)1/2 + 54(−2α3DĎ)1/2DĎ3α3b2

− 72(−2α3DĎ)1/2DĎ2α
Ď
1α

Ď
3 + 16αĎ

2
3
DĎ3

+ 18(−2αĎ
3D

Ď)1/2bDĎ2α
Ď
3

+ 54(−2αĎ
3D

Ď)1/2b3DĎ4α
Ď
3 + (−2αĎ

3D
Ď)3/2 − 72αĎ

1α
Ď
3D

Ď3α2


. (2.25)

Thus we arrive at solution (2.21) of Eq. (2.22). �

We can now impose boundary conditions of the solution (2.19) of Eq. (2.20). For an example the boundary conditions
can be

ρ(+∞) = A1; ρ(−∞) = A2;

dρ
dξ


B1

= A3, (B1 > 0);
dρ
dξ


−B2

= A4, (B2 > 0).

The boundary conditions will fix additional parameters of the solution.We leave the corresponding algebraicmanipulations
to the interested reader.

2.2. Coupled waves in a system of three populations

Let us discuss a system of three competing populations modeled by the system of Lotka–Volterra kind (A.7) for the
case of constant coefficients of change of population members and constant interaction coefficients, i.e., for the case
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Fig. 1. A few solutions that satisfy boundary conditions ρ(+∞) = A1; ρ(−∞) = A2 . Solid line: A1 = 1.5; A2 = 0.5. Dashed line: A1 = 1; A2 = 0.
Dot–dashed line: A1 = 1.5; A2 = 0. Dot–double dashed line: A1 = 2; A2 = 0.

rik = 0;αijk = 0. The system of equations becomes

∂ρ1

∂t
− D11

∂ρ1

∂x
− D12

∂ρ2

∂x
− D13

∂ρ3

∂x
= r01ρ1 − r01α

0
11ρ

2
1 − r01α

0
12ρ1ρ2 − r01α

0
13ρ1ρ3

∂ρ2

∂t
− D21

∂ρ1

∂x
− D22

∂ρ2

∂x
− D23

∂ρ3

∂x
= r02ρ2 − r02α

0
21ρ1ρ2 − r02α

0
22ρ

2
2 − r02α

0
23ρ2ρ3

∂ρ3

∂t
− D31

∂ρ1

∂x
− D32

∂ρ2

∂x
− D33

∂ρ3

∂x
= r03ρ3 − r03α

0
31ρ1ρ3 − r03α

0
32ρ2ρ3 − r03α

0
33ρ

2
3 . (2.26)

For this system we shall demonstrate the existence of a simple coupled kink wave solution (more complicated solutions
are possible too). We note that in real situations Dii = 0, i = 1, 2, 3 but above we allow the possibility that Dii is also
non-negative in order to obtain a more general solution of Eqs. (2.26).

Proposition 4. The system (2.26) possesses a coupled kind of wave solution of the type

ρ1(ξ) = −
a1c0

a1 + b1
+ a1


a1 + b1 + 4a1c0
4a1(a1 + b1)

+
θ(a1 + b1 + 4a1c0)

4a1b(a1 + b1)
tanh


θ(ξ + ξ0)

2


,

ρ2(ξ) = −
b1c0

a1 + b1
+ b1


a1 + b1 + 4a1c0
4a1(a1 + b1)

+
θ(a1 + b1 + 4a1c0)

4a1b(a1 + b1)
tanh


θ(ξ + ξ0)

2


,

ρ3(ξ) = −(a1 + b1)+ c1


a1 + b1 + 4a1c0
4a1(a1 + b1)

+
θ(a1 + b1 + 4a1c0)

4a1b(a1 + b1)
tanh


θ(ξ + ξ0)

2


, (2.27)

where ξ − x +
4a1c0+(a1+b1)(1−b+bD11)

b(a1+b1)
t and a1, b, b1, c0,D11 are free parameters.

We remember that above θ2 = b2 − 4ac where a, b, c are the parameters of the Riccati equation.

Proof. We apply the modified method of the simplest equation to the system (2.26). First of all we introduce the traveling
wave coordinate ξ = x − vt where v is the wave velocity. Then we search for the solution in the form

ρ1(ξ) =

P
i=0

aiΦ(ξ)i; ρ2(ξ) =

Q
j=0

bjΦ(ξ)j; ρ3(ξ) =

R
k=0

ckΦ(ξ)k (2.28)

where dΦ
dξ = aΦ2

+ bΦ + c . The simplest possible balance equation is P = Q = R = 1. The substitution of all the above in
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the system (2.26) leads to the following system of nine nonlinear algebraic equations

(1) − D13c1a − (v + D11)a1a − r10α120a1b1 + r10α110a21 − D12b1a − r10α130a1c1 = 0
(2) − r10α120a0b1 − r10α120a1b0 + 2r10α110a0a1 − r10α130a0c1 − r10α130a1c0 − r10a1

−D13c1b − D12b1b − (v + D11)a1b = 0
(3) − (v + D11)a1c − r10α120a0b0 − D13c1c − D12b1c − r10α130a0c0 − r10a0 + r10α110a20 = 0

(4) − D23c1a − D21a1a − r20α220b21 + r20α210a1b1 − (v + D22)b1a − r20α230b1c1 = 0
(5) − 2r20α220b0b1 + r20α210a0b1 + r20α210a1b0 − r20α230b0c1 − r20α230b1c0 − r20b1

−D23c1b − (v + D22)b1b − D21a1b = 0
(6) − D21a1c − r20α220b20 − D23c1c − (v + D22)b1c − r20α230b0c0 − r20b0 + r20α210a0b0 = 0

(7) − (v + D33)c1a − D31a1a − r30α320b1c1 + r30α310a1c1 − D32b1a − r30α330c21 = 0
(8) − r30α320b0c1 − r30α320b1c0 + r30α310a0c1 + r30α310a1c0 − 2r30α330c0c1 − r30c1

− (v + D33)c1b − D32b1b − D31a1b = 0

(9) − D31a1c − r30α320b0c0 − (v + D33)c1c − D32b1c − r30α330c20 − r30c0 + r30α310a0c0 = 0. (2.29)

The general solution of this system is very long. In order to obtain the solution from the text of Proposition 4 we fix some of
the parameters in the above system as follows

r10 = 1; r20 = 1; r30 = 1; α110 = 1;
α220 = 1; α330 = 1; α120 = 1; α130 = 1; α210 = 1;
α230 = 1; α310 = 1; α320 = 1;
D21 = D12; D31 = D13; D32 = D23; D22 = D11; D33 = D11;

D12 = 1; D13 = 1; D23 = 1. (2.30)

In this simple case the solution of the system (2.29) is (for details of solution of the system of equations bymeans of a Maple
program see Appendix C)

c1 = −(a1 + b1)

v = −
4a1c0 + bD11a1 − a1b + a1 − b1b + bD11b1 + b1

b(a1 + b1)

c = −
c0(2a1c0 + a1 + b1)b

(a1 + b1)(a1 + b1 + 4a1c0)

a = −2
a1b(a1 + b1)

(a1 + b1 + 4a1c0)

a0 = −
a1c0

a1 + b1

b0 = −
b1c0

a1 + b1
. (2.31)

Substituting the coefficients in the functions ρ1, ρ2, ρ3 we obtain the coupled kink wave solution from the formulation of
the Proposition 4. �

3. Statistical distributions and exit time

Eqs. (A.11) and (A.12) are typical equations for description of the evolution of dynamical systems. The general case of
such equations is

dxi
dt

= Xi(x1, x2, . . . , xN); i = 1, 2, . . . ,N (3.1)

where Xi(x1, x2, . . . , xN) is some (in the general case nonlinear) function. For such a kind of systems there exists a theory that
allows us to characterize some system properties in the case when the system is under the action of random perturbations.
Pontryagin, Andronov and Vitt [19] developed such a theory for random impulses that occur after every interval of time τ
and each impulse causes the phase point of the dynamical system described by Eqs. (3.1) to jump through a distance a along
a random direction. Let us first consider the case of a single population and one spatial dimension. For the case when a tends
to zero together with τ in such a way that the ratio a3/τ tends to a finite limit b it is possible to obtain an equation for the
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probability density function p(x, t) as follows (for more discussion see Appendix D):

∂p
∂t

+
∂

∂x
[X(x)p] =

b
2
∂2p
∂x2

. (3.2)

For the general case of N populations the equation for the probability density function becomes

∂p
∂t

+

N
i=1

∂

∂xi
[Xi(x1, x2, . . . , xN)p] =

1
2

N
i=1

N
j=1

bij
∂2p
∂xi∂xj

, (3.3)

where bij are again coefficients that characterize the random impulses.
Another kind of problem that can be solved by this approach is to calculate the mathematical expectation of the exit

time. Let us again first discuss the case of one population and one spatial dimension.We have a phase point that is inside the
interval [ϵ1, ϵ2] (ϵ1 < ϵ2) and the system is under the influence of the same random perturbations as described above. The
exit time is the time forwhich the phase point thatwas inside the above interval at t = 0will leave this interval through ϵ1 or
through ϵ2. If we denote as F(x) themathematical expectation for the exit time then F(x) is a solution of the equation [19,20]

b
2
d2F
dx2

+ X(x)
dF
dx

+ 1 = 0, (3.4)

with boundary conditions F(ϵ1) = F(ϵ2) = 0. For the case of many populations the zero boundary conditions are on the
entire border of the multidimensional phase space area that has to be exited and the equation for the probability density
function of the exit time is

1
2

N
i=1

N
j=1

bij
∂2F
∂xi∂xj

+

N
i=1

X(x1, x2, . . . , xN)
∂F
∂xi

+ 1 = 0. (3.5)

Let us now apply this theory to Eq. (A.12). We shall be interested in the stationary distributions p(ρ) connected to
Eq. (A.12), i.e., we shall be interested in the casewhen after a long time the probability density function p becomes stationary
and depends only on the spatial coordinate ρ. This stationary case is important because of Observation 2 from Appendix D
which states that each time dependent solution p(x, t) of the Fokker–Planck equation (D.7) converges at t → ∞ to the
stationary distribution p0(x) from Eq. (D.12). In our case x = ρ and X(x) =

L
n1=0 αn1ρ

n1 . We shall discuss two cases:
(i) the case of a single populationwhere ρ ∈ [0,∞); and (ii) another case not connected directly to the population dynamics
where ρ ∈ (−∞,∞).
Case 1: ρ ∈ [0,∞)

This case is connected directly to the population dynamics as the population density cannot be negative. We formulate

Proposition 5. Let us discuss a system described by the equation

dρ
dt

=

L
n1=0

αn1ρ
n1 (3.6)

which is under the action of random impulses that occur after every interval of time τ and each impulse causes the phase point of
the dynamical system described by Eqs. (3.12) to jump through a distance a along a random direction. Let a tend to zero together
with τ in such a way that the ratio a3/τ tends to a finite limit b. Let in addition the following requirements be fulfilled

p(0) = 0; ρ ∈ [0,∞). (3.7)

Then the stationary p.d.f. p(ρ) is

p(ρ) = C exp


2
b

L
n1=0

αn1
ρn1+1

n1 + 1


1 −


dρ exp


−

2
b

L
n1=0

αn1
ρn1+1

n1 + 1


, (3.8)

where the constant of integration C is determined by the normalization condition
∞

−∞

dρ p(ρ) = 1. (3.9)

Proof. The equation for the stationary distribution p(ρ) is a particular case of Eq. (3.2). One integration of the equation for
the stationary distribution leads to

b
2
dp
dρ

−


p(ρ)

L
n1=0

αn1ρ
n1


+ C1 = 0 (3.10)
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Eq. (3.10) can be easily integrated and the result is

p(ρ) = exp


2
b

L
n1=0

αn1
ρn1+1

n1 + 1


C −

2C1

b


dρ exp


−

2
b

L
n1=0

αn1
ρn1+1

n1 + 1


, (3.11)

where C is a constant of integration. The condition p(0) = 0 leads to C1 = bC/2 and the distribution described by Eq. (3.11)
is reduced to the distribution from Eq. (3.8). �

Case 2: ρ ∈ (−∞,∞)

Proposition 6. Let us discuss a system described by the equation

dρ
dt

=

L
n1=0

αn1ρ
n1 (3.12)

which is under the action of random impulses that occur after every interval of time τ and each impulse causes the phase point of
the dynamical system described by Eqs. (3.12) to jump through a distance a along a random direction. Let a tend to zero together
with τ in such a way that the ratio a3/τ tends to a finite limit b.

⋆ Subcase 1:
Let in addition the following requirements be fulfilled

p(0) = A; ρ ∈ (−∞,∞). (3.13)

Then the stationary p.d.f. p(ρ) is

p(ρ) = exp


2
b

L
n1=0

αn1
ρn1+1

n1 + 1


C − (C − A)


dρ exp


−

2
b

L
n1=0

αn1
ρn1+1

n1 + 1


, (3.14)

where the constant of integration C is determined by the normalization condition
∞

−∞

dρ p(ρ) = 1. (3.15)

⋆⋆ Subcase 2:
Let in addition the following requirements be fulfilled

1
p(0)

dp
dρ


ρ=0

=
2α0

b
; ρ ∈ (−∞,∞). (3.16)

Then the stationary p.d.f. p(ρ) is

p(ρ) = C exp


2
b

L
n1=0

αn1
ρn1+1

n1 + 1


, (3.17)

where the constant of integration C is determined by the normalization condition
∞

−∞

dρ p(ρ) = 1. (3.18)

Proof. Subcase 1
The equation of the stationary distribution p(ρ) is a particular case of Eq. (3.2). One integration of the equation for the

stationary distribution leads to Eq. (3.10). Eq. (3.10) can be easily integrated and the result is Eq. (3.11) where C is a constant
of integration. The condition p(0) = A leads to C1 = b(C − A)/2 and the distribution described by Eq. (3.11) is reduced to
the distribution from Eq. (3.14).
Subcase 2

The integration of Eq. (3.2) leads to Eq. (3.10) where C1 is a constant of integration. This constant is equal to zero because
of the condition (3.16). With C1 = 0 we can continue the integration of Eq. (3.10) and the result is (3.17) where the constant
of integration C is determined by the normalization condition (3.18). �

Wenote that Eq. (3.16) in combinationwith Eq. (3.17)mean that
L

n1=0 αn1 = 0. In addition f (ρ)must tend to zerowhen
ρ → ±∞. The dominant term at large values of ρ is αLρ

L. Then αL must be negative (to ensure f → 0 at large positive
values of ρ) and Lmust be odd (to ensure f → 0 at large negative values of ρ).
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a b

c d

Fig. 2. A few profiles of p(ρ) from Eq. (3.17) (in the figures ρ is denoted as ρ). (a) b = 2; α0 = 0;α1 = 1;α2 = −0.4;α3 = 0.2; α4 = 0;α5 = −0.5.
(b) α0 = 0;α1 = 1;α2 = 0;α3 = 0.2;α4 = 0;α5 = −0.5; b = 2. Here there are three fixed points. The two maxima of the p.d.f. distribution are
centered around the two stable fixed points and the minimum is centered on the unstable fixed point ρ = 0. (c) α0 = 0.003564;α1 = −0.006084;α2 =

0.3975;α3 = −1.234;α4 = 1.81;α5 = −1; b = 2. (d) α0 = 1.2936;α1 = −7.2436;α2 = 14.58;α3 = −13.63;α4 = 6;α5 = −1; b = 2. The
probability distribution has three maxima (at ρ = 0.4, 1.1, 2.1) and two minima.

A few examples of statistical distributions f (ρ) are shown in Fig. 2. Let us note here the tunnel phenomenonwhich arises
because of the presence of fluctuations. The existence of the distributions p(ρ, t) and p0(ρ)means that in the course of time
each value of the density ρ can be reached. Then if for example at the initial moment the system trajectory in the phase
space is close to a fixed point of the ODE without added fluctuations then in the course of time the phase point can leave
this area and travel to a phase space area that is close to another fixed point. This tunnel phenomenon is closely connected
to the role played by fluctuations in the case when a bifurcation happens in the studied system.

Let us now calculate the exit time expectation on the basis of Eq. (3.4).

Proposition 7. Let us discuss the system described by Eq. (3.12). The distribution Fq(ρ) from the initial position ρ to the position
q < ρ is

Fq(ρ) =

 ρ

q
dξ exp


−

2
b

L
n1=0

αn1
ξ n1+1

n1 + 1


2
b


∞

ξ

dη exp


2
b

L
n1=0

αn1
ηn1+1

n1 + 1


(3.19)

when

(⋆) F(ρ = q) = 0,
(⋆⋆) F(ρ, q) increases in the slowest possible manner as ρ → ∞.

Proof. We calculate the distribution for exit time from the initial position ρ to a position q < ρ. In the discussed case again
X(x) =

L
n1=0 αn1ρ

n1 . One integration of Eq. (3.4) leads to the equation

dF
dρ

= exp(−ψ(ρ))

C1 +


∞

ρ

dξ
2
b
exp(ψ(ξ))


; ψ(ρ) =

2
b


∞

ρ

dξX(ξ). (3.20)
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a b

Fig. 3. Exit time expectations for q = 0 (which means extinction of the population) calculated on the basis of Eq. (3.19). ρ on the horizontal axis is equal
to ρ from Eq. (3.19). For all curves b = 2. (a) Influence of the value of α3 on the exit time. α0 = 0.01;α1 = 0.2;α2 = 0.1. Solid line: α3 = −0.05;
dashed line: α3 = −0.04; dot–dashed line: α3 = −0.03; dot–double dashed line: α3 = −0.02. (b) Influence of the value of α1 on the exit time.
α0 = 0.01;α2 = 0.1;α − 3 = −0.02. Solid line: α1 = −0.3; dashed line: α1 = −0.4; dot–dashed line: α1 = −0.5; dot–double dashed line: α1 = −0.6.

The relationship (⋆⋆) requires C1 = 0 (as the corresponding term in Eq. (3.20) vanishes and the growth of dF
dρ is as slow as

possible), and the integration of Eq. (3.20) leads to the result (3.19). �

Fig. 3 shows the dependence of the exit time expectation on the population density and coefficients of the model equation
for the case L = 3. The negative values of α1,3 make extinction expected sooner whereas the positive values of the other
two parameters can delay the extinction. The theory can be easily applied for the case of a system of many interacting
populations but even in the simplest one-dimensional case the integral from Eq. (3.19) must be calculated numerically.

4. Conclusion

In this paper we have discussed two aspects of population dynamics. First we have presented a model of the space–time
dynamics of the interacting population system in two spatial dimensions. For the simplest case of one spatial dimension and
for one population we have obtained an exact traveling-wave solution of the model nonlinear PDE by means of the recently
developed modified method of the simplest equation for obtaining exact and approximate solutions of nonlinear PDEs. The
obtained exact solution describes the propagation of changes of the population density in the space. The generalization of
this theory to the case of many populations is straightforward and describes the spreading of coupled waves of changes of
densities of the studied populations. The case of three populations is discussed in the paper. The second discussed aspect
of the population dynamics was connected to the influence of the random fluctuations on the population densities. The
presence of fluctuations leads to description in terms of probability density functions for the population densities. The
discussed general theory is illustrated again for the simplest possible case of one population in two aspects: calculation
of probability density functions and calculation of the expected extinction time. As expected from the theory of diffusion
Markov processes the minima and maxima of the obtained probability density functions are exactly at the fixed points of
the corresponding non-perturbedmodel system of differential equations. The expected extinction time strongly depends on
the coefficients of the model equations. Finally a few results are obtained that are not connected to the theory of interacting
populations but may be interesting for other cases modeled by nonlinear PDEs with polynomial nonlinearities.
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Appendix A. The model equations

A.1. Spatially distributed populations

Let us consider a two-dimensional area S where N competing populations are present. The density of each population is
ρi(x, y, t) =

∆Ni
∆S , where ∆Ni is the number of individuals of the ith population that are present in the small area ∆S at the

moment t . Now let a movement of population members through the borders of the area∆S be possible and let j⃗i(x, y, t) be
the current of this movement. Then (⃗ji · n⃗)δl is the net number of members from the ith population, crossing a small border
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line δl with normal vector n. Let the density changes be summarized by the function Ci(ρ1, ρ2, . . . , ρN , x, y, t). Then the
change of the density of members of the ith population in the studied area is described by the equation

∂ρi

∂t
+ div⃗ji = Ci. (A.1)

Below we shall discuss the case where j⃗i has the form of linear multicomponent diffusion. In this case

j⃗i = −

N
k=1

Dik(ρi, ρk, x, y, t)∇ρk, (A.2)

where Dik is the diffusion coefficient. Eq. (A.2) reflects the possibility that the motion of the population members is caused
not only by gradients of the density of the own population but also it could be caused by gradients of the densities of the
other populations.

In this paper we shall consider the case where the Ci depend only on the population densities ρk, k = 1, . . . ,N . We shall
not specify the kind of the function Ci aswe shall consider the general case of relatively small population densities that allow
us to write Ci as Taylor series expansion around the zero values of all population densities as follows

Ci(ρ1, ρ2, . . . , ρN) =

∞
n1=0

∞
n2=0

. . .

∞
nN=0

α(i)n1,n2,...,nNρ
n1
1 ρ

n2
2 . . . ρ

nN
N , (A.3)

where the constant coefficients α(i)n1,n2,...,nN are as follows

α(i)n1,n2,...,nN =
1

n1!n2! . . . nN !

∂Cn1+n2+···+nN
i

∂ρ
n1
1 ∂ρ

n2
2 . . . ∂ρ

nN
N


ρ1=ρ2=···=ρN=0

. (A.4)

For an example let us consider the one-dimensional case and in addition let the diffusion coefficients Dik be constants. Then
the substitution of Eqs. (A.2) and (A.3) in (A.1) leads to the following system of nonlinear PDEs for the studied N interacting
populations:

∂ρi

∂t
−

N
k=1

Dik
∂2ρk

∂x2
=

∞
n1=0

∞
n2=0

. . .

∞
nN=0

α(i)n1,n2,...,nNρ
n1
1 ρ

n2
2 . . . ρ

nN
N . (A.5)

For the case of one population the system (A.5) is reduced to the equation

∂ρ

∂t
− D

∂2ρ

∂x2
=

∞
n1=0

αn1ρ
n1 . (A.6)

Let us give two examples of systems of the kind (A.5). The first example is connected to the classical Lotka–Volterra
case extended in [14]. In this case after assumption of dependence of the growth rates and competition coefficients on the
population density one arrives at the system of equations

∂ρi

∂t
−

n
j=1

Dij∆ρj = r0i ρi


1 −

n
j=1

(α0
ij − rijρj)−

n
j,k=1

α0
ij(αijk + ρk)ρjρk −

n
j,k,l=1

α0
ijrikαijlrikαijlρjρkρl


(A.7)

where i = 1, 2, . . . , n is a number that indexes the n competing populations; Dij is the diffusion coefficient;∆ =
∂2

∂x2
+

∂2

∂y2
;

r0i and α0
ij are the parts of the corresponding growth rates and competition coefficients that do not depend on the population

densities; rik and αijk are parameters that regulate the intensity of the dependence of the population growth rates and
competition coefficients on the population densities ρi. It can be easily checked that the system described by Eq. (A.7) is
a particular case of the system of equations given by Eqs. (A.1)–(A.4).

A system of a kind similar to the system from Eq. (A.7) arises in the social dynamics in the spatial model of ideological
struggle developed in [21]. For this case the model system of equations is

∂ρi

∂t
−

n
j=1

Dij∆ρj = riρi +
n

j=1

fijρj +
n

j=1

αijρiρj +

n
j,k=1

bijkρiρjρk + · · · (A.8)

where∆ =
∂2

∂x2
+

∂2

∂y2
; ρi, i = 1, 2, . . . , n are the spatial densities of the populations of the followers of the corresponding

ideology; ri are the rates of change of corresponding populations of adepts by births and deaths; fij is the coefficient of non-
contact conversion (the ideology of a person can be changed without contact between humans but bymass media influence
for an example); aij is the coefficient of binary contact conversion that describes the change of ideology by contacts between
followers of different ideologies.
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A.2. Spatially averaged equations

Belowwe shall apply spatial averaging to the system of Eqs. (A.5) similar to the averaging used in the optimum theory of
turbulence [22,23]. In the general two-dimensional case let a quantity q(x, y, t) be defined in a large two-dimensional plane
area S with acreage | S |. Then by definition the spatial average of q is

q(t) =
1

| S |

 
S
dx dy q(x, y, t). (A.9)

q(x, y, t) can be separated into a spatially averaged part q and the remainder Q (x, y, t):

q(x, y, t) = q(t)+ Q (x, y, t). (A.10)
Let the plane average of any product of the remainder quantities vanish: Qi = QiQj = QiQjQk = · · · = 0. In addition we
shall assume that

 
S dx dy∇

2Q has finite and small value such that ∇2Q =
1
|S|

 
S dx dy∇

2Q → 0. The application of the
averaging to Eq. (A.1) in the presence of the assumptions given by Eqs. (A.2)–(A.4) (note that in this case we have two spatial
dimensions) leads to the system of ODEs as follows (i = 1, 2, . . . ,N):

dρ i

dt
=

∞
n1=0

∞
n2=0

· · ·

∞
nN=0

α(i)n1,n2,...,nNρ
n1
1 ρ

n2
2 . . . ρ

nN
N . (A.11)

We note that Eq. (A.11) follows directly from Eq. (A.5) in the spatially homogeneous case. The above discussion shows that
Eq. (A.11) can also arise in the spatially inhomogeneous case. For the case of one population Eq. (A.11) becomes

dρ
dt

=

∞
n1=0

αn1ρ
n1 . (A.12)

We note that equations of the kind Eqs. (A.11) and (A.12) are often used as model equations in population dynamics not
only for small values of population densities but also for large values of these densities, i.e., for large ρ i. One example is
connected to Holling functional response functions in predator–prey systems [24]. For the case of one predator and one
prey the functional response can be for an example type II Holling functional response: f (ρ) =

aρ
1+ahρ where ρ is the prey

density and a and h are parameters. The functional response can be also a type III Holling functional response: f (ρ) =
ρ2

h+ρ2
.

The functional response function for the case of many prey species can be more complicated.
For small values of population densities even themodelswith complicated nonlinear functional responses can be reduced

to models with polynomial nonlinearities. An example is the one predator–two prey model [25]
dρ1

dt
= ρ1g1(ρ1, ρ2)− ρ3f1(ρ1, ρ2)

dρ2

dt
= ρ2g2(ρ1, ρ2)− ρ3f2(ρ1, ρ2)

dρ3

dt
= ρ3[c1f1(ρ1, ρ2)+ c2f2(ρ1, ρ2)] − mρ3 (A.13)

where fi are the functional responses; m is the constant mortality rate of the predator; ci are the conversion factors of
captured prey species into predators and gi are the growth functions of the corresponding prey type. ρ1,2 are the spatial
densities of the two types of prey and ρ3 is the spatial density of the predator species. For small population densities we can
apply Taylor series expansion for the functions f1,2 and g1,2 and thus obtain a system of equations from the class of equations
studied in this paper

dρ1

dt
=

∞
n1=0

∞
n2=0

ρ
n1
1 ρ

n2
2

n1!n2!
(ρ1α3,n1,n2 − ρ3α1,n1,n2)

dρ2

dt
=

∞
n1=0

∞
n2=0

ρ
n1
1 ρ

n2
2

n1!n2!
(ρ2α4,n1,n2 − ρ3α2,n1,n2)

dρ3

dt
= ρ3


−m +

∞
n1=0

∞
n2=0

ρ
n1
1 ρ

n2
2

n1!n2!
(c1α1,n1,n2 + c2α2,n1,n2)


(A.14)

where

α1,n1,n2 =


∂n1+n2 f1
∂ρ

n1
1 ∂ρ

n2
2

 
ρ1=ρ2=0

; α2,n1,n2 =


∂n1+n2 f2
∂ρ

n1
1 ∂ρ

n2
2

 
ρ1=ρ2=0

;

α3,n1,n2 =


∂n1+n2g1
∂ρ

n1
1 ∂ρ

n2
2


|ρ1=ρ2=0; α4,n1,n2 =


∂n1+n2g2
∂ρ

n1
1 ∂ρ

n2
2

 
ρ1=ρ2=0

;
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Appendix B. The method of the simplest equation and its version based on the balance equation

There are many approaches for obtaining exact analytic solutions of nonlinear partial differential equations [26–30]. In
this paper we use the modified method of the simplest equation. The schema of application of the modified method of the
simplest equation is shown in Fig. B.4. The modified method of the simplest equation is a version of the method of the
simplest equation [31,32] that is based on the fact that after application of an appropriate ansatz a large class of NPDEs can
be reduced to ODEs of the kind (P means polynomial)

P


F(ξ),

dF
dξ
,
d2F
dξ 2

, . . .


= 0, (B.1)

and for some equations of the kind (B.1) particular solutions can be obtained which are finite series

F(ξ) =

P
i=0

ai[Φ(ξ)]i, (B.2)

constructed by the solution Φ(ξ) of a simpler equation referred to as the simplest equation. The simplest equation can be
the equation of Bernoulli, equation of Riccati, etc. The substitution of Eq. (B.2) in Eq. (B.1) leads to the polynomial equation

P = σ0 + σ1Φ + σ2Φ
2
+ · · · + σrΦ

r
= 0, (B.3)

where the coefficients σi, i = 0, 1, . . . , r depend on the parameters of the equation and on the parameters of the solutions.
Equating all these coefficients to zero, i.e., by setting

σi = 0, i = 1, 2, . . . , r, (B.4)

one obtains a system of nonlinear algebraic equations. Each solution of this system leads to a solution of kind (B.2) of
Eq. (B.1).

In order to obtain a non-trivial solution by the abovemethodwe have to ensure that σr contains at least two terms. To do
this within the scope of the modified method of the simplest equation we have to balance the highest powers ofΦ that are
obtained from the different terms of the solved equation of kind (B.1). As a result of this we obtain an additional equation
between some of the parameters of the equation and the solution. This equation is called the balance equation [33–37].

We note that the method of the simplest equation and its modified version are closely connected to the problem
for obtaining meromorphic solutions of nonlinear partial differential equations [38,39]. By the methodology described in
[38,39] one can obtain other interesting classes of solutions of nonlinear PDEs such as rational solutions for example. In
additionwe stress that bymeans of the travelingwave ansatz one reduces the nonlinear PDE to a nonlinearODE and after this
if an appropriate simplest ODE exists then a particular solution can be obtained that usually depends on asmany parameters
of the problem as possible. In many cases such particular solutions are among the few possible exact analytic solutions of
the studied nonlinear PDE.

Appendix C. Maple program for solving the coupled waves case

Here we present a Maple program for obtaining the exact solution of a system of equations for description of coupled
waves in a system of three populations discussed in Section 2.2. The program has the following parts.
Part 1: The equations

1. > eq1 := −(v + D11) ∗ diff (rho1(xi), xi)− D12 ∗ diff (rho2(xi), xi)− D13 ∗ diff (rho3(xi), xi)− r10 ∗ rho1(xi)+ r10 ∗

alpha110 ∗ rho1(xi)2 − r10 ∗ alpha120 ∗ rho1(xi) ∗ rho2(xi)− r10 ∗ alpha130 ∗ rho1(xi) ∗ rho3(xi);
2. > eq2 := −D21 ∗ diff (rho1(xi), xi) − (v + D22) ∗ diff (rho2(xi), xi) − D23 ∗ diff (rho3(xi), xi) − r20 ∗ rho2(xi) + r20 ∗

alpha210 ∗ rho1(xi) ∗ rho2(xi)− r20 ∗ alpha220 ∗ rho2(xi)2 − r20 ∗ alpha230 ∗ rho2(xi) ∗ rho3(xi);
3. > eq3 := −D31 ∗ diff (rho1(xi), xi)− D32 ∗ diff (rho2(xi), xi)− (v + D33) ∗ diff (rho3(xi), xi)− r30 ∗ rho3(xi)+ r30 ∗

alpha310 ∗ rho1(xi) ∗ rho3(xi)− r30 ∗ alpha320 ∗ rho2(xi) ∗ rho3(xi)− r30 ∗ alpha330 ∗ rho3(xi)2;

Part 2: Substitution of the relationships for ρ1,2,3 in the equations

4. > rho1(xi) := a0 + a1 ∗ Phi(xi);
5. > rho2(xi) := b0 + b1 ∗ Phi(xi);
6. > rho3(xi) := c0 + c1 ∗ Phi(xi);
7. > eq1; eq2; eq3;

Part 3: Substitution of the relationship for dΦ
dξ in the equations

8. > eq1a := subs(diff (Phi(xi), xi) = a ∗ Phi(xi)2 + b ∗ Phi(xi)+ c, eq1);
9. > eq2a := subs(diff (Phi(xi), xi) = a ∗ Phi(xi)2 + b ∗ Phi(xi)+ c, eq2);

10. > eq3a := subs(diff (Phi(xi), xi) = a ∗ Phi(xi)2 + b ∗ Phi(xi)+ c, eq3);
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Fig. B.4. The modified method of the simplest equation.

Part 4: Extracting the system of nonlinear algebraic equations

11. > eq1b := collect(eq1a, Phi(xi));
12. > eq2b := collect(eq2a, Phi(xi));
13. > eq3b := collect(eq3a, Phi(xi));
14. > e1 := coeff (eq1b, Phi(xi)2);
15. > e2 := coeff (eq1b, Phi(xi));
16. > e3 := −(v + D11) ∗ a1 ∗ c − r10 ∗ alpha120 ∗ a0 ∗ b0 − D13 ∗ c1 ∗ c − D12 ∗ b1 ∗ c − r10 ∗ alpha130 ∗ a0 ∗ c0 −

r10 ∗ a0 + r10 ∗ alpha110 ∗ a02
;

17. > e4 := coeff (eq2b, Phi(xi)2);
18. > e5 := coeff (eq2b, Phi(xi));
19. > e6 := −D21 ∗ a1 ∗ c − r20 ∗ alpha220 ∗ b02

− D23 ∗ c1 ∗ c − (v+ D22) ∗ b1 ∗ c − r20 ∗ alpha230 ∗ b0 ∗ c0− r20 ∗

b0 + r20 ∗ alpha210 ∗ a0 ∗ b0;
20. > e7 := coeff (eq3b, Phi(xi)2);
21. > e8 := coeff (eq3b, Phi(xi));
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22. > e9 := −D31 ∗ a1 ∗ c − r30 ∗ alpha320 ∗ b0 ∗ c0 − (v+ D33) ∗ c1 ∗ c − D32 ∗ b1 ∗ c − r30 ∗ alpha330 ∗ c02
− r30 ∗

c0 + r30 ∗ alpha310 ∗ a0 ∗ c0;

Part 5: Simplifying assumptions

23. > r10 := 1; r20 := 1; r30 := 1; alpha110 := 1; alpha220 := 1; alpha330 := 1; alpha120 := 1; alpha130 :=

1; alpha210 := 1; alpha230 := 1; alpha310 := 1; alpha320 := 1;D21 := D12;D31 := D13;D32 := D23;D22 :=

D11;D33 := D11;D12 := 1;D13 := 1;D23 := 1;
24. > e1; e2; e3; e4; e5; e6; e7; e8; e9;

Part 6: Solution of the system of nonlinear algebraic equations

25. > sol1 := solve(e1, c1);
26. > c1 := sol1;
27. > sol2 := solve(e2, v);
28. > v := sol2;
29. > sol3 := solve(e3, c);
30. > c := sol3;
31. > sol4 := solve(e4, a);
32. > a := sol4[1];
33. > sol5 := solve(e5, a0);
34. > a0 := sol5;
35. > sol6 := solve(e8, b0);
36. > b0 := sol6;

By this program one obtains relationships for the parameters a0, b0, c1, a, c, v.

Appendix D. Fluctuations, diffusion Markov process and Fokker–Planck equation

In the paper we discuss equations of the kind

dx
dt

= X[x(t)] + η(t) (D.1)

where the process η(t)models small fluctuations. Let η(t) = σξ(t)where σ > 0 is the intensity factor and the covariance
function of the process ξ(t) be a δ-function E[ξ(t)ξ ′(t)] = δ(t − t ′). If in addition the expected value of ξ(t) is zero:
E[ξ(t)] = 0 the process ξ(t) is called white noise and the equation

dx
dt

= X[x(t)] + σξ(t); x(0) = x0, (D.2)

is called the Langevin equation.
ξ(t) can bewritten as a time derivative of aWiener processWt (for this processW0 = 0; the functionWt is almost surely

continuous; and Wt has independent increments Wt − Ws(0 ≤ s < t)which are normally distributed with expected value
0 and variance equal to t − s):

ξ(t) =
dWt

dt
→ Wt =


0
ds ξ(s) (D.3)

Then the Langevin equation can be written in the form

dxt = X(xt)dt + σdWt; x0 : random. (D.4)

After one integration of the Langevin equation one obtains

xt(ω) = x0(ω)+


0
dsX[xs(ω)] + σWt(ω). (D.5)

As the white noise is δ-correlated the solution of Eq. (D.5) is a homogeneous Markov process. The infinitesimal generator A
of the solution process xt [20,40] is a differential operator of second order

(Ag)(x) = f (x)g ′(x)+
σ 2

2
g ′′(x). (D.6)

The form of the infinitesimal operator A is important as it is determines the form of the Fokker–Planck equation for the one
dimensional distribution p(x, t) connected to the solution process (D.5). This Fokker–Planck equation is

∂p(x, t)
∂t

= −
∂

∂x
[X(x)p(x, t)] +

σ 2

2
∂2p(x, t)
∂x2

; p(x, 0) = p0(x). (D.7)
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We note that if we set σ 2
= bwe obtain Eq. (3.2) from the main text of the paper. By setting

Jp = pX −
σ 2

2
∂p
∂x

(D.8)

we can write Eq. (D.7) in the form

∂p
∂t

+
∂ Jp
∂x

= 0 (D.9)

Eq. (D.9) is a balance equation for the probability. There is no production of probability and the balance equation shows
that the transport of probability along x happens by ‘flow’, determined by the ‘velocity’ field X and ‘diffusion’ determined
by −

σ 2

2
∂p
∂x . This ‘diffusion’ tries to decrease the differences in the probability distribution.

Because of the above the considered class ofMarkov processes are called diffusion processes. X is the drift of the diffusion
process and σ 2 is called the diffusion coefficient of the diffusion process.

We finish this short discussion by two observations that are important for the text in the body of the paper [20]

Observation 1. In the stationary case p(x, t) → p(x, 0) = p0(x) the stochastic system described by Eq. (D.4) spends much time
around the stable fixed points of the corresponding deterministic system

dx
dt

= X(x)

Observation 1 is a consequence of the fact that for the stationary case the Fokker–Planck equation (D.7) becomes

0 = −
d
dx

[X(x)p0(x)] +
σ 2

2
d2p0(x)
dx2

. (D.10)

After one integration one obtains

J0p = −X(x)p0(x)+
σ 2

2
dp0(x)
dx

= const. (D.11)

The integration constant is equal to zero because of the boundary condition J0p = 0|±∞ and for p0(x) one obtains

p0(x) =

exp

−

2
σ 2 V (x)




∞

−∞
dx exp


−

2
σ 2 V (x)

 (D.12)

where

V (x) = −

 x

dz X(z) (D.13)

The local extrema of p0(x) are given by

dp0
dx


x0

= 0
(D.12)
−−−−→

dV
dx


x0

= 0
(D.13)
−−−−→ f (x0) = 0. (D.14)

Thus the extrema of p0(x) coincide with the fixed points of the corresponding deterministic differential equation. The
maxima of p0(x) are located at the stable fixed points and the minima of p0(x) are located at the unstable fixed points.

The second observation is connected to the importance of the stationary distribution p0(x):

Observation 2. Each time dependent solution p(x, t) of the Fokker–Planck equation (D.7) converges at t → ∞ to the stationary
distribution p0(x) from Eq. (D.12) (if p0(x) exists).

In order to show that Observation 2 is true we shall use the technique of the Lyapunov functional H(t). Let us discuss the
functional

H(t) =


∞

−∞

dx p(x, t) ln
p(x, t)
p0(x)

(D.15)

where p(x, t) is an arbitrary solution of the Fokker–Planck equation (D.7). Using the normalization


∞

−∞
dx p(x, t) = 1 for

each t > 0 and the fact that ln(1/y) ≥ 1 − y for y > 0 one can write the inequality

H(t) =


∞

−∞

dx p(x, t)

ln

p(x, t)
p0(x)

+
p0(x)
p(x, t)

− 1


≥ 0 (D.16)
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where the equality arises for p(x, t) = p0(x). We shall show that dH/dt ≤ 0 for each t . We take the derivative of H with
respect to t and by means of the Fokker–Planck equation (D.7) after some calculations we obtain the relationships

dH
dt

=


∞

−∞

dx

−
∂

∂x
[X(x)p(x, t)] +

σ 2

2
∂2p(x, t)
∂x2

 
ln

p(x, t)
p0(x)


= −

σ 2

2


∞

−∞

dxp(x, t)


p0(x)
p(x, t)

∂

∂x


p0(x)
p(x, t)

2
. (D.17)

The last integral in (D.17) is positive for p ≠ p0 and it is equal to zero only when p(x, t) = p0(x). Then dH
dt ≤ 0 and dH

dt = 0
only when p(x, t) = p0(x). From (D.16) and from dH

dt ≤ 0 it follows that

lim
t→∞

p(x, t) = p0(x) (D.18)

which is exactly the essence of Observation 2.
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