时序逻辑电路的分析是对给定的逻辑电路进行逻辑性能研究,以此说明逻辑电路的功能。然而,在实际应用中,通常会根据具体需要,设计一个逻辑电路,以完成某些逻辑功能。事实上,逻辑时序电路的分析是其设计的逆过程。其一般步骤如下:
1.根据逻辑功能要求,把实际问题转化为逻辑问题,并建立原始状态表或状态图
2.化简原始状态表或状态图。
3.对简化的状态表或状态图进行状态分配与编码,即进行二进制状态表的转化,以此得到逻辑电路的状态表或状态图。
4.选择触发器类型,并由电路状态数确定最小触发器数,导出状态方程,列出输出方程,确定驱动方程。
5.根据输出方程和驱动方程设计并画出逻辑电路图。
6.最后对逻辑电路图进行逻辑分析,以验证其逻辑功能。
其流程图如下:
上面是时序逻辑电路设计的基本步骤,在实际应用中,可根据具体情况进行适当调整。下面结合具体实例来说明时序逻辑电路的设计方法。
【例5】 用JK触发器设计一个110数字序列检测器。
该题目的实际要求很接近逻辑问题。由题意可知,该电路应有一个输入变量X和一个输出变量Z。当输入的数字序列包含110时,输出变量Z置1,否则为0。这样,电路的输出不仅与输入有关还与电路状态有关,可设计为一mealy型同步时序逻辑电路
根据题意,确定电路原始状态转换规律。列出不同的输入变量X下,电路状态变化规律与输出变量Z的值。其状态转换规律流程图5-11。
在图中,a为初始状态,X输入为0时,状态转换为b;输入为1时,状态转换为 c,此时的输出Z为0。同理,在状态b时,输入0进入状态d;输入1进入状态e,此时输出仍为0。在状态c时,输入0进入状态f;输入1进入状态g,此时输出仍为0。在d、e、f、g状态下,输入0或1,应与d、e、f、g状态比较,看是否存在新的状态,如果与前一状态相同即用前一状态表示,如果存在序列110输出Z即为1。由上面流程图的分析,画出原始状态表5-5如下:
在原始状态图中,下划线的状态可以进行合并,得到简化的状态表5-6。
由简化状态表可知,电路状态共有三个,记为S0(p)、S1(q)、S2(g)。三个状态所需计数状态最小数为4,可选两个JK触发器(N≦22)。两个触发器的状态Q2Q1共有00、01、10、11,所以,可在这四种状态中任选三种。这里选取S0=00,S1=01,S2=11。构造出状态转换表5-7。
根据状态转换表画出状态图如图5-12所示。
由状态图,根据JK触发器特征方程:
列出驱动方程和输出方程真值表5-8。
表5-8 例5驱动方程和输出方程真值表
驱动方程和输出方程的逻辑表达式如下:
式中∑m为最小项之和,∑d为无关项之和。利用卡诺图化简,得到最简的驱动方程和输出方程如下:
由驱动方程和输出方程画出逻辑电路图如图5-13所示。
最后对电路进行检验,检验一是电路的功能是否符合要求;二是电路可否能自启动。在这里,对电路进行分析得知电路功能符合要求。在本设计中,由于存在“10”无关状态,所以要检查电路可否由10状态转入有效状态。其检查状态表5-9如下:
可见,设计电路功能符合要求,并且能够自启动。