
Intel 8086

The purple ceramic C8086 variant

Produced From 1978 to
1990s

Common
manufacturer(s)

Intel, AMD, NEC,

Fujitsu, Harris

(Intersil), OKI,

Siemens AG,

Texas Instruments,

Mitsubishi,

Panasonic

(Matsushita)

Max. CPU clock
rate

5 MHz to 10 MHz

Min. feature
size

3 µm

Instruction set x86-16

Predecessor (Intel 8080)

Successor 80186 and 80286
(both of which
were introduced
in early 1982)

Co-processor Intel 8087

Package(s) 40 pin DIP

Variant 8088

Intel 8086
The 8086[1] (also called iAPX 86)[2] is a 16-bit microprocessor chip designed by
Intel between early 1976 and mid-1978, when it was released. The Intel 8088,
released in 1979, is a slightly modified chip with an external 8-bit data bus (allowing
the use of cheaper and fewer supporting ICs[note 1]), and is notable as the processor
used in the original IBM PC design, including the widespread version called IBM
PC XT.

The 8086 gave rise to the x86 architecture, which eventually became Intel's most
successful line of processors.

History
Background
The first x86 design

Details
Buses and operation

Pin description[5]

Registers and instructions
Flags
Segmentation

Porting older software

Example code
Performance
Floating point

Chip versions
List of Intel 8086
Derivatives and clones

Hardware modes

Support chips

Microcomputers using the 8086

See also

Notes

References

External links

Contents

History

Background

https://en.wikipedia.org/wiki/File:Intel_C8086.jpg
https://en.wikipedia.org/wiki/Intel
https://en.wikipedia.org/wiki/AMD
https://en.wikipedia.org/wiki/NEC
https://en.wikipedia.org/wiki/Fujitsu
https://en.wikipedia.org/wiki/Harris_Corporation
https://en.wikipedia.org/wiki/Intersil
https://en.wikipedia.org/wiki/Oki_Electric_Industry
https://en.wikipedia.org/wiki/Siemens_AG
https://en.wikipedia.org/wiki/Texas_Instruments
https://en.wikipedia.org/wiki/Mitsubishi
https://en.wikipedia.org/wiki/Panasonic
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Clock_rate
https://en.wikipedia.org/wiki/3_%C2%B5m_process
https://en.wikipedia.org/wiki/Instruction_set
https://en.wikipedia.org/wiki/X86-16
https://en.wikipedia.org/wiki/Intel_8080
https://en.wikipedia.org/wiki/Intel_80186
https://en.wikipedia.org/wiki/Intel_80286
https://en.wikipedia.org/wiki/X87#8087
https://en.wikipedia.org/wiki/Dual_in-line_package
https://en.wikipedia.org/wiki/Intel_8088
https://en.wikipedia.org/wiki/16-bit
https://en.wikipedia.org/wiki/Microprocessor
https://en.wikipedia.org/wiki/Intel
https://en.wikipedia.org/wiki/Intel_8088
https://en.wikipedia.org/wiki/Bus_(computing)
https://en.wikipedia.org/wiki/Integrated_circuit
https://en.wikipedia.org/wiki/IBM_Personal_Computer
https://en.wikipedia.org/wiki/IBM_Personal_Computer_XT
https://en.wikipedia.org/wiki/X86_architecture

In 1972, Intel launched the 8008, the first 8-bit microprocessor.[note 2] It implemented an instruction set designed by Datapoint
corporation with programmable CRT terminals in mind, which also proved to be fairly general-purpose. The device needed several
additional ICs to produce a functional computer, in part due to it being packaged in a small 18-pin "memory package", which ruled
out the use of a separate address bus (Intel was primarily a DRAM manufacturer at the time).

Two years later, Intel launched the 8080,[note 3] employing the new 40-pin DIL packages originally developed for calculator ICs to
enable a separate address bus. It has an extended instruction set that is source-compatible (not binary compatible) with the 8008 and
also includes some 16-bit instructions to make programming easier. The 8080 device, often described as "the first truly useful
microprocessor", was eventually replaced by the depletion-load-based 8085 (1977), which sufficed with a single +5 V power supply
instead of the three different operating voltages of earlier chips.[note 4] Other well known 8-bit microprocessors that emerged during
these years are Motorola 6800 (1974), General Instrument PIC16X (1975), MOS Technology 6502 (1975), Zilog Z80 (1976), and
Motorola 6809 (1978).

The 8086 project started in May 1976 and was originally intended as a temporary
substitute for the ambitious and delayed iAPX 432 project. It was an attempt to draw
attention from the less-delayed 16- and 32-bit processors of other manufacturers
(such as Motorola, Zilog, and National Semiconductor) and at the same time to
counter the threat from the Zilog Z80 (designed by former Intel employees), which
became very successful. Both the architecture and the physical chip were therefore
developed rather quickly by a small group of people, and using the same basic
microarchitecture elements and physical implementation techniques as employed for
the slightly older 8085 (and for which the 8086 also would function as a
continuation).

Marketed as source compatible, the 8086 was designed to allow assembly language
for the 8008, 8080, or 8085 to be automatically converted into equivalent
(suboptimal) 8086 source code, with little or no hand-editing. The programming
model and instruction set is (loosely) based on the 8080 in order to make this possible. However, the 8086 design was expanded to
support full 16-bit processing, instead of the fairly basic 16-bit capabilities of the 8080/8085.

New kinds of instructions were added as well; full support for signed integers, base+offset addressing, and self-repeating operations
were akin to the Z80 design[3] but were all made slightly more general in the 8086. Instructions directly supporting nested ALGOL-
family languages such as Pascal and PL/M were also added. According to principal architect Stephen P. Morse, this was a result of a
more software centric approach than in the design of earlier Intel processors (the designers had experience working with compiler
implementations). Other enhancements included microcoded multiply and divide instructions and a bus structure better adapted to
future coprocessors (such as 8087 and 8089) and multiprocessor systems.

The first revision of the instruction set and high level architecture was ready after about three months,[note 5] and as almost no CAD
tools were used, four engineers and 12 layout people were simultaneously working on the chip.[note 6] The 8086 took a little more
than two years from idea to working product, which was considered rather fast for a complex design in 1976–1978.

The 8086 was sequenced[note 7] using a mixture of random logic[4] and microcode and was implemented using depletion-load nMOS
circuitry with approximately 20,000 active transistors (29,000 counting all ROM and PLA sites). It was soon moved to a new refined
nMOS manufacturing process called HMOS (for High performance MOS) that Intel originally developed for manufacturing of fast
static RAM products.[note 8] This was followed by HMOS-II, HMOS-III versions, and, eventually, a fully static CMOS version for
battery powered devices, manufactured using Intel's CHMOS processes.[note 9] The original chip measured 33 mm² and minimum
feature size was 3.2 μm.

The first x86 design

Intel 8086 CPU die image

https://en.wikipedia.org/wiki/Intel_8008
https://en.wikipedia.org/wiki/Instruction_set
https://en.wikipedia.org/wiki/Datapoint
https://en.wikipedia.org/wiki/Computer_terminal
https://en.wikipedia.org/wiki/Integrated_circuit
https://en.wikipedia.org/wiki/DRAM
https://en.wikipedia.org/wiki/Intel_8080
https://en.wikipedia.org/wiki/Dual_in-line_package
https://en.wikipedia.org/wiki/Calculator
https://en.wikipedia.org/wiki/Source-compatible
https://en.wikipedia.org/wiki/Binary_compatible
https://en.wikipedia.org/wiki/16-bit
https://en.wikipedia.org/wiki/Depletion-load_NMOS_logic
https://en.wikipedia.org/wiki/Intel_8085
https://en.wikipedia.org/wiki/Motorola_6800
https://en.wikipedia.org/wiki/PIC_microcontroller
https://en.wikipedia.org/wiki/MOS_Technology_6502
https://en.wikipedia.org/wiki/Zilog_Z80
https://en.wikipedia.org/wiki/Motorola_6809
https://en.wikipedia.org/wiki/IAPX_432
https://en.wikipedia.org/wiki/Motorola
https://en.wikipedia.org/wiki/Zilog
https://en.wikipedia.org/wiki/National_Semiconductor
https://en.wikipedia.org/wiki/Zilog_Z80
https://en.wikipedia.org/wiki/Microarchitecture
https://en.wikipedia.org/wiki/Intel_8085
https://en.wikipedia.org/wiki/Source_code_compatibility
https://en.wikipedia.org/wiki/Assembly_language
https://en.wikipedia.org/wiki/Z80
https://en.wikipedia.org/wiki/Nested_function
https://en.wikipedia.org/wiki/ALGOL
https://en.wikipedia.org/wiki/Pascal_(programming_language)
https://en.wikipedia.org/wiki/PL/M
https://en.wikipedia.org/wiki/Stephen_P._Morse
https://en.wikipedia.org/wiki/Microcode
https://en.wikipedia.org/wiki/Intel_8087
https://en.wikipedia.org/wiki/Intel_8089
https://en.wikipedia.org/wiki/Random_logic
https://en.wikipedia.org/wiki/Microcode
https://en.wikipedia.org/wiki/Transistor
https://en.wikipedia.org/wiki/Read_only_memory
https://en.wikipedia.org/wiki/Programmable_logic_array
https://en.wikipedia.org/wiki/HMOS
https://en.wikipedia.org/wiki/Static_RAM
https://en.wikipedia.org/wiki/CMOS
https://en.wikipedia.org/wiki/CHMOS
https://en.wikipedia.org/wiki/File:Intel_8086_CPU_Die.JPG

Intel 8086 registers
1

9
1

8
1

7
1

6
1

5
1

4
1

3
1

2
1

1
1

0
0

9
0

8
0

7
0

6
0

5
0

4
0

3
0

2
0

1
0

0 (bit position)

Main registers

 AH AL AX (primary

accumulator)

 BH BL BX (base,

accumulator)

 CH CL CX (counter,

accumulator)

 DH DL DX

(accumulator,

other

functions)

Index registers

0 0 0 0 SI Source Index

0 0 0 0 DI Destination

Index

0 0 0 0 BP Base Pointer

0 0 0 0 SP Stack Pointer

The architecture was defined by Stephen P. Morse with some help and assistance by Bruce Ravenel (the architect of the 8087) in
refining the final revisions. Logic designer Jim McKevitt and John Bayliss were the lead engineers of the hardware-level
development team[note 10] and Bill Pohlman the manager for the project. The legacy of the 8086 is enduring in the basic instruction
set of today's personal computers and servers; the 8086 also lent its last two digits to later extended versions of the design, such as the
Intel 286 and the Intel 386, all of which eventually became known as the x86 family. (Another reference is that the PCI Vendor ID for
Intel devices is 8086h.)

All internal registers, as well as internal and external data buses, are 16 bits wide, which
firmly established the "16-bit microprocessor" identity of the 8086. A 20-bit external
address bus provides a 1 MB physical address space (220 = 1,048,576). This address
space is addressed by means of internal memory "segmentation". The data bus is
multiplexed with the address bus in order to fit all of the control lines into a standard 40-
pin dual in-line package. It provides a 16-bit I/O address bus, supporting 64 KB of
separate I/O space. The maximum linear address space is limited to 64 KB, simply
because internal address/index registers are only 16 bits wide. Programming over 64 KB
memory boundaries involves adjusting the segment registers (see below); this difficulty
existed until the 80386 architecture introduced wider (32-bit) registers (the memory
management hardware in the 80286 did not help in this regard, as its registers are still
only 16 bits wide).

Some of the control pins, which carry essential signals for all external operations, have
more than one function depending upon whether the device is operated in min or max
mode. The former mode is intended for small single-processor systems, while the latter
is for medium or large systems using more than one
processor.

pin/pins description

AD15 -
AD0

multiplexed data/address
bus

The 8086 has eight more or less general 16-bit
registers (including the stack pointer but excluding
the instruction pointer, flag register and segment
registers). Four of them, AX, BX, CX, DX, can also
be accessed as twice as many 8-bit registers (see
figure) while the other four, BP, SI, DI, SP, are 16-
bit only.

Due to a compact encoding inspired by 8-bit
processors, most instructions are one-address or
two-address operations, which means that the result

Details

The 8086 pin assignments in min
and max mode

Buses and operation

Pin description[5]

Registers and instructions

https://en.wikipedia.org/wiki/Accumulator_(computing)
https://en.wikipedia.org/wiki/Index_register
https://en.wikipedia.org/wiki/Stack_register
https://en.wikipedia.org/wiki/Stephen_P._Morse
https://en.wikipedia.org/wiki/Intel_286
https://en.wikipedia.org/wiki/Intel_386
https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/PCI_Configuration_Space
https://en.wikipedia.org/wiki/Megabyte
https://en.wikipedia.org/wiki/Multiplexed
https://en.wikipedia.org/wiki/Dual_in-line_package
https://en.wikipedia.org/wiki/Kilobyte
https://en.wikipedia.org/wiki/80386
https://en.wikipedia.org/wiki/80286
https://en.wikipedia.org/wiki/Processor_register
https://en.wikipedia.org/wiki/Stack-based_memory_allocation
https://en.wikipedia.org/wiki/File:Intel_8086_pinout.svg

Program counter

0 0 0 0 IP Instruction

Pointer

Segment registers

CS 0 0 0 0 Code

Segment

DS 0 0 0 0 Data

Segment

ES 0 0 0 0 Extra

Segment

SS 0 0 0 0 Stack

Segment

Status register

 - - - - O D I T S Z - A - P - C Flags

is stored in one of the operands. At most one of the
operands can be in memory, but this memory
operand can also be the destination, while the other
operand, the source, can be either register or
immediate. A single memory location can also often
be used as both source and destination which,
among other factors, further contributes to a code
density comparable to (and often better than) most
eight-bit machines at the time.

The degree of generality of most registers are much
greater than in the 8080 or 8085. However, 8086
registers were more specialized than in most
contemporary minicomputers and are also used
implicitly by some instructions. While perfectly
sensible for the assembly programmer, this makes
register allocation for compilers more complicated
compared to more orthogonal 16-bit and 32-bit processors of the time such as the PDP-11, VAX, 68000, 32016 etc. On the other
hand, being more regular than the rather minimalistic but ubiquitous 8-bit microprocessors such as the 6502, 6800, 6809, 8085, MCS-
48, 8051, and other contemporary accumulator based machines, it is significantly easier to construct an efficient code generator for
the 8086 architecture.

Another factor for this is that the 8086 also introduced some new instructions (not present in the 8080 and 8085) to better support
stack-based high-level programming languages such as Pascal and PL/M; some of the more useful instructions are push mem-op, and
ret size, supporting the "Pascal calling convention" directly. (Several others, such as push immed and enter, were added in the
subsequent 80186, 80286, and 80386 processors.)

A 64 KB (one segment) stack growing towards lower addresses is supported in hardware; 16-bit words are pushed onto the stack, and
the top of the stack is pointed to by SS:SP. There are 256 interrupts, which can be invoked by both hardware and software. The
interrupts can cascade, using the stack to store the return addresses.

The 8086 has 64 K of 8-bit (or alternatively 32 K of 16-bit word) I/O port space.

8086 has a 16-bit flags register. Nine of these condition code flags are active, and indicate the current state of the processor: Carry
flag (CF), Parity flag (PF), Auxiliary carry flag (AF), Zero flag (ZF), Sign flag (SF), Trap flag (TF), Interrupt flag (IF), Direction flag
(DF), and Overflow flag (OF).

There are also three 16-bit segment registers (see figure) that allow the 8086 CPU to access one megabyte of memory in an unusual
way. Rather than concatenating the segment register with the address register, as in most processors whose address space exceeds
their register size, the 8086 shifts the 16-bit segment only four bits left before adding it to the 16-bit offset (16×segment + offset),
therefore producing a 20-bit external (or effective or physical) address from the 32-bit segment:offset pair. As a result, each external
address can be referred to by 212 = 4096 different segment:offset pairs.

 0110 1000 1000 0111 0000 Segment, 16 bits, shifted 4 bits left (or multiplied by
0x10)

+ 0011 0100 1010 1001 Offset, 16 bits

Flags

Segmentation

https://en.wikipedia.org/wiki/Program_counter
https://en.wikipedia.org/wiki/Overflow_flag
https://en.wikipedia.org/wiki/Direction_flag
https://en.wikipedia.org/wiki/IF_(x86_flag)
https://en.wikipedia.org/wiki/Trap_flag
https://en.wikipedia.org/wiki/Sign_flag
https://en.wikipedia.org/wiki/Zero_flag
https://en.wikipedia.org/wiki/Adjust_flag
https://en.wikipedia.org/wiki/Parity_flag
https://en.wikipedia.org/wiki/Carry_flag
https://en.wikipedia.org/wiki/Code_density
https://en.wikipedia.org/wiki/Minicomputer
https://en.wikipedia.org/wiki/PDP-11
https://en.wikipedia.org/wiki/VAX
https://en.wikipedia.org/wiki/68000
https://en.wikipedia.org/wiki/32016
https://en.wikipedia.org/wiki/MOS_Technology_6502
https://en.wikipedia.org/wiki/Motorola_6800
https://en.wikipedia.org/wiki/6809
https://en.wikipedia.org/wiki/Intel_8085
https://en.wikipedia.org/wiki/MCS-48
https://en.wikipedia.org/wiki/Intel_8051
https://en.wikipedia.org/wiki/Code_generator
https://en.wikipedia.org/wiki/PL/M
https://en.wikipedia.org/wiki/Calling_convention
https://en.wikipedia.org/wiki/Stack_(data_structure)
https://en.wikipedia.org/wiki/Computer_hardware
https://en.wikipedia.org/wiki/Interrupt
https://en.wikipedia.org/wiki/Return_address
https://en.wikipedia.org/wiki/I/O_port
https://en.wikipedia.org/wiki/Status_register
https://en.wikipedia.org/wiki/Carry_flag
https://en.wikipedia.org/wiki/Parity_flag
https://en.wikipedia.org/wiki/Auxiliary_flag
https://en.wikipedia.org/wiki/Zero_flag
https://en.wikipedia.org/wiki/Sign_flag
https://en.wikipedia.org/wiki/Trap_flag
https://en.wikipedia.org/wiki/IF_(x86_flag)
https://en.wikipedia.org/wiki/Direction_flag
https://en.wikipedia.org/wiki/Overflow_flag
https://en.wikipedia.org/wiki/X86_memory_segmentation
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Megabyte

 0110 1011 1101 0001 1001 Address, 20 bits

Although considered complicated and cumbersome by many programmers, this scheme also has advantages; a small program (less
than 64 KB) can be loaded starting at a fixed offset (such as 0000) in its own segment, avoiding the need for relocation, with at most
15 bytes of alignment waste.

Compilers for the 8086 family commonly support two types of pointer, near and far. Near pointers are 16-bit offsets implicitly
associated with the program's code or data segment and so can be used only within parts of a program small enough to fit in one
segment. Far pointers are 32-bit segment:offset pairs resolving to 20-bit external addresses. Some compilers also support huge
pointers, which are like far pointers except that pointer arithmetic on a huge pointer treats it as a linear 20-bit pointer, while pointer
arithmetic on a far pointer wraps around within its 16-bit offset without touching the segment part of the address.

To avoid the need to specify near and far on numerous pointers, data structures, and functions, compilers also support "memory
models" which specify default pointer sizes. The tiny (max 64K), small (max 128K), compact (data > 64K), medium (code > 64K),
large (code,data > 64K), and huge (individual arrays > 64K) models cover practical combinations of near, far, and huge pointers for
code and data. The tiny model means that code and data are shared in a single segment, just as in most 8-bit based processors, and can
be used to build .com files for instance. Precompiled libraries often come in several versions compiled for different memory models.

According to Morse et al.,.[6] the designers actually contemplated using an 8-bit shift (instead of 4-bit), in order to create a 16 MB
physical address space. However, as this would have forced segments to begin on 256-byte boundaries, and 1 MB was considered
very large for a microprocessor around 1976, the idea was dismissed. Also, there were not enough pins available on a low cost 40-pin
package for the additional four address bus pins

In principle, the address space of the x86 series could have been extended in later processors by increasing the shift value, as long as
applications obtained their segments from the operating system and did not make assumptions about the equivalence of different
segment:offset pairs.[note 11] In practice the use of "huge" pointers and similar mechanisms was widespread and the flat 32-bit
addressing made possible with the 32-bit offset registers in the 80386 eventually extended the limited addressing range in a more
general way (see below).

Intel could have decided to implement memory in 16 bit words (which would have eliminated the BHE signal along with much of the
address bus complexities already described). This would mean that all instruction object codes and data would have to be accessed in
16-bit units. Users of the 8080 long ago realized, in hindsight, that the processor makes very efficient use of its memory. By having a
large number of 8-bit object codes, the 8080 produces object code as compact as some of the most powerful minicomputers on the
market at the time.[7]:5–26

If the 8086 is to retain 8-bit object codes and hence the efficient memory use of the 8080, then it cannot guarantee that (16-bit)
opcodes and data will lie on an even-odd byte address boundary. The first 8-bit opcode will shift the next 8-bit instruction to an odd
byte or a 16-bit instruction to an odd-even byte boundary. By implementing the BHE signal and the extra logic needed, the 8086 has
allows instructions to exist as 1-byte, 3-byte or any other odd byte object codes.[7]:5–26

Simply put: this is a trade off. If memory addressing is simplified so that memory is only accessed in 16-bit units, memory will be
used less efficiently. Intel decided to make the logic more complicated, but memory use more efficient. This was at a time when
memory size was considerably smaller, and at a premium, than that which users are used to today.[7]:5–26

Small programs could ignore the segmentation and just use plain 16-bit addressing. This allows 8-bit software to be quite easily
ported to the 8086. The authors of MS-DOS took advantage of this by providing an Application Programming Interface very similar
to CP/M as well as including the simple .com executable file format, identical to CP/M. This was important when the 8086 and MS-
DOS were new, because it allowed many existing CP/M (and other) applications to be quickly made available, greatly easing
acceptance of the new platform.

Porting older software

https://en.wikipedia.org/wiki/Relocation_(computing)
https://en.wikipedia.org/wiki/Pointer_(computer_programming)
https://en.wikipedia.org/wiki/Pointer_arithmetic
https://en.wikipedia.org/wiki/Integer_overflow
https://en.wikipedia.org/wiki/COM_file
https://en.wikipedia.org/wiki/8080
https://en.wikipedia.org/wiki/8-bit
https://en.wikipedia.org/wiki/Application_Programming_Interface
https://en.wikipedia.org/wiki/CP/M

The following 8086/8088 assembler source code is for a subroutine named _memcpy that copies a block of data bytes of a given size

from one location to another. The data block is copied one byte at a time, and the data movement and looping logic utilizes 16-bit
operations.

0000:1000

0000:1000
0000:1000 55
0000:1001 89 E5
0000:1003 06
0000:1004 8B 4E 06
0000:1007 E3 11
0000:1009 8B 76 04
0000:100C 8B 7E 02
0000:100F 1E
0000:1010 07

0000:1011 8A 04
0000:1013 88 05
0000:1015 46
0000:1016 47
0000:1017 49
0000:1018 75 F7

0000:101A 07
0000:101B 5D
0000:101C 29 C0
0000:101E C3
0000:101F

; _memcpy(dst, src, len)
; Copy a block of memory from one location to another.
;
; Entry stack parameters
; [BP+6] = len, Number of bytes to copy
; [BP+4] = src, Address of source data block
; [BP+2] = dst, Address of target data block
;
; Return registers
; AX = Zero

 org 1000h ; Start at 0000:1000h

_memcpy proc
 push bp ; Set up the call frame
 mov bp,sp
 push es ; Save ES
 mov cx,[bp+6] ; Set CX = len
 jcxz done ; If len = 0, return
 mov si,[bp+4] ; Set SI = src
 mov di,[bp+2] ; Set DI = dst
 push ds ; Set ES = DS
 pop es

loop mov al,[si] ; Load AL from [src]
 mov [di],al ; Store AL to [dst]
 inc si ; Increment src
 inc di ; Increment dst
 dec cx ; Decrement len
 jnz loop ; Repeat the loop

done pop es ; Restore ES
 pop bp ; Restore previous call frame
 sub ax,ax ; Set AX = 0
 ret ; Return
 end proc

The code above uses the BP (base pointer) register to establish a call frame, an area on the stack that contains all of the parameters
and local variables for the execution of the subroutine. This kind of calling convention supports reentrant and recursive code, and has
been used by most ALGOL-like languages since the late 1950s.

The above routine is a rather cumbersome way to copy blocks of data. The 8086 provides dedicated instructions for copying strings
of bytes. These instructions assume that the source data is stored at DS:SI, the destination data is stored at ES:DI, and that the number
of elements to copy is stored in CX. The above routine requires the source and the destination block to be in the same segment,
therefore DS is copied to ES. The loop section of the above can be replaced by:

0000:1011 FC
0000:1012 F2
0000:1013 A4

 cld ; Copy towards higher addresses
loop repnz ; Repeat until CX = 0
 movsb ; Move the data block

This copies the block of data one byte at a time. The REPNZ instruction causes the following MOVSB to repeat until CX is zero,

automatically incrementing SI and DI and decrementing CX as it repeats. Alternatively the MOVSW instruction can be used to copy

16-bit words (double bytes) at a time (in which case CX counts the number of words copied instead of the number of bytes). Most
assemblers will properly recognize the REPNZ instruction if used as an in-line prefix to the MOVSB instruction, as in REPNZ

MOVSB.

This routine will operate correctly if interrupted, because the program counter will continue to point to the REP instruction until the

block copy is completed. The copy will therefore continue from where it left off when the interrupt service routine returns control.

Example code

https://en.wikipedia.org/wiki/Assembly_language
https://en.wikipedia.org/wiki/Call_frame
https://en.wikipedia.org/wiki/Calling_convention
https://en.wikipedia.org/wiki/Reentrancy_(computing)
https://en.wikipedia.org/wiki/Recursion_(computer_science)

Although partly shadowed by other design
choices in this particular chip, the multiplexed
address and data buses limit performance
slightly; transfers of 16-bit or 8-bit quantities are
done in a four-clock memory access cycle, which
is faster on 16-bit, although slower on 8-bit
quantities, compared to many contemporary 8-bit
based CPUs. As instructions vary from one to six
bytes, fetch and execution are made concurrent
and decoupled into separate units (as it remains
in today's x86 processors): The bus interface unit
feeds the instruction stream to the execution unit
through a 6-byte prefetch queue (a form of
loosely coupled pipelining), speeding up
operations on registers and immediates, while
memory operations became slower (four years
later, this performance problem was fixed with
the 80186 and 80286). However, the full (instead
of partial) 16-bit architecture with a full width
ALU meant that 16-bit arithmetic instructions
could now be performed with a single ALU
cycle (instead of two, via internal carry, as in the
8080 and 8085), speeding up such instructions considerably. Combined with orthogonalizations of operations versus operand types
and addressing modes, as well as other enhancements, this made the performance gain over the 8080 or 8085 fairly significant,
despite cases where the older chips may be faster (see below).

Execution times for typical instructions (in clock cycles)[8]

instruction
register-
register

register
immediate

register-
memory

memory-
register

memory-
immediate

mov 2 4 8+EA 9+EA 10+EA

ALU 3 4 9+EA, 16+EA, 17+EA

jump register => 11 ; label => 15 ; condition,label => 16

integer
multiply

70~160 (depending on operand data as well as size) including
any EA

integer
divide

80~190 (depending on operand data as well as size) including
any EA

EA = time to compute effective address, ranging from 5 to 12 cycles.
Timings are best case, depending on prefetch status, instruction alignment, and other factors.

As can be seen from these tables, operations on registers and immediates were fast (between 2 and 4 cycles), while memory-operand
instructions and jumps were quite slow; jumps took more cycles than on the simple 8080 and 8085, and the 8088 (used in the IBM
PC) was additionally hampered by its narrower bus. The reasons why most memory related instructions were slow were threefold:

Loosely coupled fetch and execution units are efficient for instruction prefetch, but not for jumps and random data
access (without special measures).
No dedicated address calculation adder was afforded; the microcode routines had to use the main ALU for this
(although there was a dedicated segment + offset adder).
The address and data buses were multiplexed, forcing a slightly longer (33~50%) bus cycle than in typical
contemporary 8-bit processors.

Performance

Simplified block diagram over Intel 8088 (a variant of 8086); 1=main
registers; 2=segment registers and IP; 3=address adder; 4=internal
address bus; 5=instruction queue; 6=control unit (very simplified!);
7=bus interface; 8=internal databus; 9=ALU; 10/11/12=external
address/data/control bus.

https://en.wikipedia.org/wiki/Multiplexed
https://en.wikipedia.org/wiki/Bus_(computing)
https://en.wikipedia.org/wiki/Concurrency_(computer_science)
https://en.wikipedia.org/wiki/Pipelining
https://en.wikipedia.org/wiki/Processor_register
https://en.wikipedia.org/wiki/Operand
https://en.wikipedia.org/wiki/80186
https://en.wikipedia.org/wiki/80286
https://en.wikipedia.org/wiki/Arithmetic_logic_unit
https://en.wikipedia.org/wiki/Orthogonalization
https://en.wikipedia.org/wiki/Operand
https://en.wikipedia.org/wiki/Addressing_mode
https://en.wikipedia.org/wiki/Intel_8080
https://en.wikipedia.org/wiki/Intel_8085
https://en.wikipedia.org/wiki/Multiplexing
https://en.wikipedia.org/wiki/File:Intel_8086_block_scheme.svg

However, memory access performance was drastically enhanced with Intel's next generation of 8086 family CPUs. The 80186 and
80286 both had dedicated address calculation hardware, saving many cycles, and the 80286 also had separate (non-multiplexed)
address and data buses.

The 8086/8088 could be connected to a mathematical coprocessor to add hardware/microcode-based floating-point performance. The
Intel 8087 was the standard math coprocessor for the 8086 and 8088, operating on 80-bit numbers. Manufacturers like Cyrix (8087-
compatible) and Weitek (not 8087-compatible) eventually came up with high-performance floating-point coprocessors that competed
with the 8087, as well as with the subsequent, higher-performing Intel 80387.

The clock frequency was originally limited to 5 MHz (IBM PC used 4.77 MHz, 4/3 the standard NTSC color burst frequency), but
the last versions in HMOS were specified for 10 MHz. HMOS-III and CMOS versions were manufactured for a long time (at least a
while into the 1990s) for embedded systems, although its successor, the 80186/80188 (which includes some on-chip peripherals), has
been more popular for embedded use.

The 80C86, the CMOS version of the 8086, was used in the GRiDPad, Toshiba T1200, HP 110, and finally the 1998–1999 Lunar
Prospector.

For the packaging, the Intel 8086 was available both in ceramic and plastic DIP packages.

Model number Frequency Technology Temperature range Date of release Price (USD)[1]

8086 5 MHz HMOS 0 °C to 70 °C[9] June 8, 1978[10] 86.65[11]

8086-1 10 MHz HMOS II Commercial

8086-2 8 MHz HMOS II Commercial May/June 1980[12] 200[12]

8086-4 4 MHz HMOS Commercial

I8086 −40 °C to +85 °C[9] May/June 1980[9] 173.25[9]

1. ^ In quantity of 100.

Floating point

Chip versions

A ceramic D8086 variant A plastic P8086 variant

List of Intel 8086

Derivatives and clones

https://en.wikipedia.org/wiki/Intel_80186
https://en.wikipedia.org/wiki/Intel_80286
https://en.wikipedia.org/wiki/Floating-point
https://en.wikipedia.org/wiki/Intel_8087
https://en.wikipedia.org/wiki/Cyrix
https://en.wikipedia.org/wiki/Weitek
https://en.wikipedia.org/wiki/Intel_80387
https://en.wikipedia.org/wiki/Color_burst
https://en.wikipedia.org/wiki/HMOS
https://en.wikipedia.org/wiki/CMOS
https://en.wikipedia.org/wiki/Embedded_system
https://en.wikipedia.org/wiki/Intel_80186
https://en.wikipedia.org/wiki/Intel_80188
https://en.wikipedia.org/wiki/GRiDPad
https://en.wikipedia.org/wiki/Toshiba_T1200
https://en.wikipedia.org/wiki/HP_110
https://en.wikipedia.org/wiki/Lunar_Prospector
https://en.wikipedia.org/wiki/Intel_8086#endnote_quantity
https://en.wikipedia.org/wiki/File:Intel_D8086_CS.jpg
https://en.wikipedia.org/wiki/File:Intel_P8086.jpg

Compatible—and, in many cases, enhanced—versions were manufactured by
Fujitsu, Harris/Intersil, OKI, Siemens AG, Texas Instruments, NEC, Mitsubishi, and
AMD. For example, the NEC V20 and NEC V30 pair were hardware-compatible
with the 8088 and 8086 even though NEC made original Intel clones μPD8088D and
μPD8086D respectively, but incorporated the instruction set of the 80186 along with
some (but not all) of the 80186 speed enhancements, providing a drop-in capability
to upgrade both instruction set and processing speed without manufacturers having
to modify their designs. Such relatively simple and low-power 8086-compatible
processors in CMOS are still used in embedded systems.

The electronics industry of the Soviet Union was able to replicate the 8086 through
both industrial espionage and reverse engineering. The resulting chip,
K1810VM86, was binary and pin-compatible with the 8086.

i8086 and i8088 were respectively the cores of the Soviet-made PC-compatible
EC1831 and EC1832 desktops. (EC1831 is the EC identification of IZOT 1036C
and EC1832 is the EC identification of IZOT 1037C, developed and manufactured
in Bulgaria. EC stands for Единая Система.) However, the EC1831 computer
(IZOT 1036C) had significant hardware differences from the IBM PC prototype.
The EC1831 was the first PC-compatible computer with dynamic bus sizing (US
Pat. No 4,831,514). Later some of the EC1831 principles were adopted in PS/2 (US
Pat. No 5,548,786) and some other machines (UK Patent Application, Publication
No. GB-A-2211325, Published June 28, 1989).

The 8086 and 8088 support two hardware modes: maximum mode and minimum
mode. Maximum mode is for large applications such as multiprocessing and is also
required to support the 8087 coprocessor. The mode is usually hardwired into the
circuit and cannot be changed by software. Specifically, pin #33 (MN/MX) is either
wired to voltage or to ground to determine the mode. Changing the state of pin #33
changes the function of certain other pins, most of which have to do with how the
CPU handles the (local) bus. The IBM PC and PC/XT use an Intel 8088 running in
maximum mode, which allows the CPU to work with an optional 8087 coprocessor installed in the math coprocessor socket on the
PC or PC/XT mainboard. (The PC and PC/XT may require maximum mode for other reasons, such as perhaps to support the DMA
controller.) The workings of minimum mode configuration can be described in the terms of timing diagrams.

In a minimum mode 8086-based system, the 8086 microprocessor is placed into minimum mode by strapping its MN/MX pin to logic
high, i.e. +5V. In minimum mode, all control signals are generated by the 8086 microprocessor itself. Components in minimum mode
are latches, trans-receiver, clock generator, memory and I/O device.

Intel 8237: direct memory access (DMA) controller
Intel 8251: universal synchronous/asynchronous receiver/transmitter at 19.2 kbit/s
Intel 8253: programmable interval timer, 3x 16-bit max 10 MHz
Intel 8255: programmable peripheral interface, 3x 8-bit I/O pins used for printer connection etc.
Intel 8259: programmable interrupt controller
Intel 8279: keyboard/display controller, scans a keyboard matrix and display matrix like 7-seg
Intel 8282/8283: 8-bit latch
Intel 8284: clock generator

Soviet clone K1810VM86

OKI M80C86A QFP-56

NEC μPD8086D-2 (8 MHz) from the
year 1984, week 19 JAPAN (clone of
Intel D8086-2)

Hardware modes

Support chips

https://en.wikipedia.org/wiki/Fujitsu
https://en.wikipedia.org/wiki/Harris_Corporation
https://en.wikipedia.org/wiki/Intersil
https://en.wikipedia.org/wiki/Oki_Electric_Industry
https://en.wikipedia.org/wiki/Siemens_AG
https://en.wikipedia.org/wiki/Texas_Instruments
https://en.wikipedia.org/wiki/NEC
https://en.wikipedia.org/wiki/Mitsubishi
https://en.wikipedia.org/wiki/AMD
https://en.wikipedia.org/wiki/NEC_V20
https://en.wikipedia.org/wiki/NEC_V30
https://en.wikipedia.org/wiki/Soviet_Union
https://en.wikipedia.org/wiki/Industrial_espionage
https://en.wikipedia.org/wiki/K1810VM86
https://en.wikipedia.org/w/index.php?title=EC1831&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=EC1832&action=edit&redlink=1
https://en.wikipedia.org/wiki/Intel_8237
https://en.wikipedia.org/wiki/Intel_8251
https://en.wikipedia.org/wiki/Intel_8253
https://en.wikipedia.org/wiki/Intel_8255
https://en.wikipedia.org/wiki/Intel_8259
https://en.wikipedia.org/wiki/Intel_8279
https://en.wikipedia.org/wiki/Seven-segment_display
https://en.wikipedia.org/wiki/Intel_8282
https://en.wikipedia.org/wiki/Intel_8283
https://en.wikipedia.org/wiki/Intel_8284
https://en.wikipedia.org/wiki/File:KL_USSR_KP1810BM86.jpg
https://en.wikipedia.org/wiki/K1810VM86
https://en.wikipedia.org/wiki/File:Oki_80c86a.jpg
https://en.wikipedia.org/wiki/Oki_Electric_Industry
https://en.wikipedia.org/wiki/QFP
https://en.wikipedia.org/wiki/File:UPD8086D-2_NEC_1984year_19week_JAPAN.JPG

Intel 8286/8287: bidirectional 8-bit driver. In 1980 both Intel I8286/I8287 (industrial grade) version were available for
16.25 USD in quantities of 100.[9]

Intel 8288: bus controller
Intel 8289: bus arbiter

NEC µPD765 or Intel 8272A: floppy controller[13]

The Intel Multibus-compatible single-board computer ISBC 86/12 was announced in 1978.[14]

The Xerox NoteTaker was one of the earliest portable computer designs in 1978 and used three 8086 chips (as
CPU, graphics processor, and I/O processor), but never entered commercial production.
Seattle Computer Products shipped S-100 bus based 8086 systems (SCP200B) as early as November 1979.
The Norwegian Mycron 2000, introduced in 1980.
One of the most influential microcomputers of all, the IBM PC, used the Intel 8088, a version of the 8086 with an 8-
bit data bus (as mentioned above).
The first Compaq Deskpro used an 8086 running at 7.14 MHz, (?) but was capable of running add-in cards designed
for the 4.77 MHz IBM PC XT.
An 8 MHz 8086 was used in the AT&T 6300 PC (built by Olivetti), an IBM PC-compatible desktop microcomputer.
The M24 / PC 6300 has IBM PC/XT compatible 8-bit expansion slots, but some of them have a proprietary extension
providing the full 16-bit data bus of the 8086 CPU (similar in concept to the 16-bit slots of the IBM PC AT, but
different in the design details, and physically incompatible).
The IBM PS/2 models 25 and 30 were built with an 8 MHz 8086.
The Amstrad/Schneider PC1512, PC1640, PC2086, PC3086 and PC5086 all used 8086 CPUs at 8 MHz.
The NEC PC-9801.
The Tandy 1000 SL-series and RL machines used 9.47 MHz 8086 CPUs.

The IBM Displaywriter word processing machine[15] and the Wang Professional Computer, manufactured by Wang
Laboratories, also used the 8086.
NASA used original 8086 CPUs on equipment for ground-based maintenance of the Space Shuttle Discovery until
the end of the space shuttle program in 2011. This decision was made to prevent software regression that might
result from upgrading or from switching to imperfect clones.[16]

KAMAN Process and Area Radiation Monitors[17]

Transistor count
iAPX, for the iAPX name

1. Fewer TTL buffers, latches, multiplexers (although the amount of TTL logic was not drastically reduced). It also
permits the use of cheap 8080-family ICs, where the 8254 CTC, 8255 PIO, and 8259 PIC were used in the IBM PC
design. In addition, it makes PCB layout simpler and boards cheaper, as well as demanding fewer (1- or 4-bit wide)
DRAM chips.

2. using enhancement load PMOS logic (requiring 14 V, achieving TTL compatibility by having VCC at +5 V and VDD at
−9 V).

3. Using non-saturated enhancement-load NMOS logic (demanding a higher gate voltage for the load-transistor gates).

4. Made possible with depletion-load nMOS logic (the 8085 was later made using HMOS processing, just like the
8086).

5. Rev.0 of the instruction set and architecture was ready in about three months, according to Morse.

6. Using rubylith, light boards, rulers, electric erasers, and a digitizer (according to Jenny Hernandez, member of the
8086 design team, in a statement made on Intel's webpage for its 25th birthday).

7. 8086 used less microcode than many competitors' designs, such as the MC68000 and others

8. Fast static RAMs in MOS technology (as fast as bipolar RAMs) was an important product for Intel during this period.

9. CHMOS is Intel's name for CMOS circuits manufactured using processing steps very similar to HMOS.

Microcomputers using the 8086

See also

Notes

https://en.wikipedia.org/w/index.php?title=Intel_8286&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=Intel_8287&action=edit&redlink=1
https://en.wikipedia.org/wiki/Intel_8288
https://en.wikipedia.org/wiki/Intel_8289
https://en.wikipedia.org/wiki/Floppy-disk_controller
https://en.wikipedia.org/wiki/Multibus
https://en.wikipedia.org/wiki/Single-board_computer
https://en.wikipedia.org/wiki/Xerox_NoteTaker
https://en.wikipedia.org/wiki/Portable_computer
https://en.wikipedia.org/wiki/Seattle_Computer_Products
https://en.wikipedia.org/wiki/S-100_bus
https://en.wikipedia.org/wiki/Mycron
https://en.wikipedia.org/wiki/IBM_PC
https://en.wikipedia.org/wiki/Intel_8088
https://en.wikipedia.org/wiki/Bus_(computing)
https://en.wikipedia.org/wiki/Compaq_Deskpro
https://en.wikipedia.org/wiki/IBM_PC_XT
https://en.wikipedia.org/wiki/Olivetti_M24
https://en.wikipedia.org/wiki/Olivetti
https://en.wikipedia.org/wiki/IBM_PC_AT
https://en.wikipedia.org/wiki/IBM_Personal_System/2
https://en.wikipedia.org/wiki/Amstrad_PC1512
https://en.wikipedia.org/wiki/Amstrad_PC1640
https://en.wikipedia.org/w/index.php?title=Amstrad_PC2086&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=Amstrad_PC3086&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=Amstrad_PC5086&action=edit&redlink=1
https://en.wikipedia.org/wiki/NEC_PC-9801
https://en.wikipedia.org/wiki/Tandy_1000
https://en.wikipedia.org/wiki/IBM_Displaywriter
https://en.wikipedia.org/wiki/Wang_Laboratories
https://en.wikipedia.org/wiki/NASA
https://en.wikipedia.org/wiki/Space_Shuttle_Discovery
https://en.wikipedia.org/wiki/Software_regression
https://en.wikipedia.org/wiki/Transistor_count
https://en.wikipedia.org/wiki/IAPX
https://en.wikipedia.org/wiki/Intel_8255
https://en.wikipedia.org/wiki/PMOS_logic
https://en.wikipedia.org/wiki/Volt
https://en.wikipedia.org/wiki/NMOS_logic
https://en.wikipedia.org/wiki/Rubylith
https://en.wikipedia.org/wiki/Digitizer
https://en.wikipedia.org/wiki/HMOS

Intel datasheets
List of 8086 CPUs and their clones at CPUworld.com
8086 Pinouts
Maximum Mode Interface
The 8086 User's manual October 1979 INTEL Corporation (PDF document)

10. Other members of the design team were Peter A.Stoll and Jenny Hernandez.

11. Some 80186 clones did change the shift value, but were never commonly used in desktop computers.

1. "Microprocessor Hall of Fame" (https://web.archive.org/web/20070706032836/http://www.intel.com/museum/online/hi
st_micro/hof/). Intel. Archived from the original (http://www.intel.com/museum/online/hist%5Fmicro/hof/) on 2007-07-
06. Retrieved 2007-08-11.

2. iAPX 286 Programmer's Reference (http://bitsavers.org/components/intel/80286/210498-001_iAPX_286_Programm
ers_Reference_1983.pdf) (PDF). Intel. 1983. page 1-1.

3. Birth of a Standard: The Intel 8086 Microprocessor. Thirty years ago, Intel released the 8086 processor, introducing
the x86 architecture that underlies every PC — Windows, Mac, or Linux — produced today (http://www.pcworld.com/
article/146957/birth_of_a_standard_the_intel_8086_microprocessor.html), PC World, June 17, 2008

4. Randall L. Geiger, Phillip E. Allen, Noel R. Strader VLSI design techniques for analog and digital circuits, McGraw-
Hill Book Co., 1990, ISBN 0-07-023253-9, page 779 "Random Logic vs. Structured Logic Forms", illustration of use
of "random" describing CPU control logic

5. Brey, Barry (2007). The Intel Microprocessors. Pearson Education, Dorling Kindersley Publishing. pp. 323–326.
ISBN 81-317-1428-4.

6. Intel Microprocessors : 8008 to 8086 by Stephen P. Morse et al. (http://stevemorse.org/8086history/8086history.doc)

7. Osborne 16 bit Processor Handbook (Adam Osborne & Gerry Kane) ISBN 0-931988-43-8

8. Microsoft Macro Assembler 5.0 Reference Manual. Microsoft Corporation. 1987. "Timings and encodings in this
manual are used with permission of Intel and come from the following publications: Intel Corporation. iAPX 86, 88,
186 and 188 User's Manual, Programmer's Reference, Santa Clara, Calif. 1986." (Similarly for iAPX 286, 80386,
80387.)

9. 8086 Available for industrial environment, Intel Preview Special Issue: 16-Bit Solutions, Intel Corporation, May/June
1980, page 29.

10. View Processors Chronologically by Date of Introduction: (http://www.intel.com/pressroom/kits/quickrefyr.htm#1978)

11. The 8086 Family: Concepts and realities, Intel Preview Special Issue: 16-Bit Solutions, Intel Corporation, May/June
1980, page 19.

12. New 8086 family products boost processor performance by 50 percent, Intel Preview Special Issue: 16-Bit Solutions,
Intel Corporation, May/June 1980, page 17.

13. "The floppy controller evolution | OS/2 Museum" (http://www.os2museum.com/wp/the-floppy-controller-evolution/).
2011-05-26. Retrieved 2016-05-12. "In the original IBM PC (1981) and PC/XT (1983), the FDC was physically
located on a separate diskette adapter card. The FDC itself was a NEC µPD765A or a compatible part, such as the
Intel 8272A."

14. "Intel Adds 16-Bit Single Board" (https://books.google.com/books?id=07X0ovA_MmEC&pg=PA86#v=onepage&q&f=f
alse). Computerworld. XII (50): 86. December 11, 1978. ISSN 0010-4841 (https://www.worldcat.org/issn/0010-4841).

15. Zachmann, Mark (August 23, 1982). "Flaws in IBM Personal Computer frustrate critic" (https://books.google.com/boo
ks?id=VDAEAAAAMBAJ&pg=PA57). InfoWorld. Palo Alto, CA: Popular Computing. 4 (33): 57–58. ISSN 0199-6649
(https://www.worldcat.org/issn/0199-6649). "the IBM Displaywriter is noticeably more expensive than other industrial
micros that use the 8086."

16. For Old Parts, NASA Boldly Goes ... on eBay (https://www.nytimes.com/2002/05/12/technology/ebusiness/12NASA.
html?pagewanted=2), May 12, 2002.

17. Kaman Tech. Manual

References

External links

http://datasheets.chipdb.org/Intel/x86/808x/datashts/8086
http://www.cpu-world.com/CPUs/8086/
http://www.cpu-world.com/info/Pinouts/8086.html
http://www.8085projects.info/post/Maximum-Mode-Interface.aspx
http://matthieu.benoit.free.fr/cross/data_sheets/Intel_8086_users_manual.htm
https://en.wikipedia.org/wiki/PDF
https://web.archive.org/web/20070706032836/http://www.intel.com/museum/online/hist_micro/hof/
http://www.intel.com/museum/online/hist_micro/hof/
http://bitsavers.org/components/intel/80286/210498-001_iAPX_286_Programmers_Reference_1983.pdf
http://www.pcworld.com/article/146957/birth_of_a_standard_the_intel_8086_microprocessor.html
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-07-023253-9
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/81-317-1428-4
http://stevemorse.org/8086history/8086history.doc
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-931988-43-8
https://en.wikipedia.org/wiki/MASM
http://www.intel.com/pressroom/kits/quickrefyr.htm#1978
http://www.os2museum.com/wp/the-floppy-controller-evolution/
https://books.google.com/books?id=07X0ovA_MmEC&pg=PA86#v=onepage&q&f=false
https://en.wikipedia.org/wiki/International_Standard_Serial_Number
https://www.worldcat.org/issn/0010-4841
https://books.google.com/books?id=VDAEAAAAMBAJ&pg=PA57
https://en.wikipedia.org/wiki/International_Standard_Serial_Number
https://www.worldcat.org/issn/0199-6649
https://www.nytimes.com/2002/05/12/technology/ebusiness/12NASA.html?pagewanted=2

8086 program codes using emu8086 (Version 4.08) Emulator
Intel 8086/80186 emulator written in C, this file is part of a larger PC emulator

Retrieved from "https://en.wikipedia.org/w/index.php?title=Intel_8086&oldid=817868686"

This page was last edited on 31 December 2017, at 01:26.

Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using this
site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia
Foundation, Inc., a non-profit organization.

http://www.shubhsblog.com/category/8086-programs/
http://sourceforge.net/p/fake86/code/ci/master/tree/src/fake86/cpu.c
https://en.wikipedia.org/w/index.php?title=Intel_8086&oldid=817868686
https://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License
https://wikimediafoundation.org/wiki/Terms_of_Use
https://wikimediafoundation.org/wiki/Privacy_policy
https://www.wikimediafoundation.org/

