
Instruction set architecture
An instruction set architecture (ISA) is an abstract model of a computer. It is also referred to as architecture or computer
architecture. A realization of an ISA is called an implementation. An ISA permits multiple implementations that may vary in
performance, physical size, and monetary cost (among other things); because the ISA serves as the interface between software and
hardware. Software that has been written for an ISA can run on different implementations of the same ISA. This has enabled binary
compatibility between different generations of computers to be easily achieved, and the development of computer families. Both of
these developments have helped to lower the cost of computers and to increase their applicability. For these reasons, the ISA is one of
the most important abstractions in computing today.

An ISA defines everything a machine language programmer needs to know in order to program a computer. What an ISA defines
differs between ISAs; in general, ISAs define the supported data types, what state there is (such as the main memory and registers)
and their semantics (such as the memory consistency and addressing modes), the instruction set (the set of machine instructions that
comprises a computer's machine language), and the input/output model.

Overview

Classification of ISAs

Machine language
Instruction types

Data handling and memory operations
Arithmetic and logic operations
Control flow operations
Coprocessor instructions

Complex instructions
Parts of an instruction
Instruction length
Representation
Design

Instruction set implementation
Code density
Number of operands
Register pressure

See also

References

Further reading

External links

An instruction set architecture is distinguished from a microarchitecture, which is the set of processor design techniques used, in a
particular processor, to implement the instruction set. Processors with different microarchitectures can share a common instruction
set. For example, the Intel Pentium and the Advanced Micro Devices Athlon implement nearly identical versions of the x86
instruction set, but have radically different internal designs.

Contents

Overview

https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/Computer_performance
https://en.wikipedia.org/wiki/Interface_(computing)
https://en.wikipedia.org/wiki/Software
https://en.wikipedia.org/wiki/Computer_hardware
https://en.wikipedia.org/wiki/Binary_compatibility
https://en.wikipedia.org/wiki/Computing
https://en.wikipedia.org/wiki/Machine_language
https://en.wikipedia.org/wiki/Programmer
https://en.wikipedia.org/wiki/Data_type
https://en.wikipedia.org/wiki/Main_memory
https://en.wikipedia.org/wiki/Processor_register
https://en.wikipedia.org/wiki/Memory_consistency
https://en.wikipedia.org/wiki/Addressing_mode
https://en.wikipedia.org/wiki/Machine_instruction
https://en.wikipedia.org/wiki/Input/output
https://en.wikipedia.org/wiki/Microarchitecture
https://en.wikipedia.org/wiki/Processor_design
https://en.wikipedia.org/wiki/Intel
https://en.wikipedia.org/wiki/P5_(microarchitecture)
https://en.wikipedia.org/wiki/Advanced_Micro_Devices
https://en.wikipedia.org/wiki/Athlon
https://en.wikipedia.org/wiki/X86_instruction_set


The concept of an architecture, distinct from the design of a specific machine, was developed by Fred Brooks at IBM during the
design phase of System/360.

Prior to NPL [System/360], the company's computer designers had been free to honor cost objectives not only by
selecting technologies but also by fashioning functional and architectural refinements. The SPREAD compatibility
objective, in contrast, postulated a single architecture for a series of five processors spanning a wide range of cost and
performance. None of the five engineering design teams could count on being able to bring about adjustments in
architectural specifications as a way of easing difficulties in achieving cost and performance objectives.[1]:p.137

Some virtual machines that support bytecode as their ISA such as Smalltalk, the Java virtual machine, and Microsoft's Common
Language Runtime, implement this by translating the bytecode for commonly used code paths into native machine code. In addition,
these virtual machines execute less frequently used code paths by interpretation (see: Just-in-time compilation). Transmeta
implemented the x86 instruction set atop VLIW processors in this fashion.

An ISA may be classified in a number of different ways. A common classification is by architectural complexity. A complex
instruction set computer (CISC) has many specialized instructions, some of which may only be rarely used in practical programs. A
reduced instruction set computer (RISC) simplifies the processor by efficiently implementing only the instructions that are frequently
used in programs, while the less common operations are implemented as subroutines, having their resulting additional processor
execution time offset by infrequent use.[2]

Other types include very long instruction word (VLIW) architectures, and the closely related long instruction word (LIW) and
explicitly parallel instruction computing (EPIC) architectures. These architectures seek to exploit instruction-level parallelism with
less hardware than RISC and CISC by making the compiler responsible for instruction issue and scheduling.

Architectures with even less complexity have been studied, such as the minimal instruction set computer (MISC) and one instruction
set computer (OISC). These are theoretically important types, but have not been commercialized.

Machine language is built up from discrete statements or instructions. On the processing architecture, a given instruction may
specify:

particular registers for arithmetic, addressing, or control functions
particular memory locations or offsets
particular addressing modes used to interpret the operands

More complex operations are built up by combining these simple instructions, which are executed sequentially, or as otherwise
directed by control flow instructions.

Examples of operations common to many instruction sets include:

Set a register to a fixed constant value.
Copy data from a memory location to a register, or vice versa (a machine instruction is often called move; however,
the term is misleading). Used to store the contents of a register, result of a computation, or to retrieve stored data to
perform a computation on it later. Often called load and store operations.
Read and write data from hardware devices.

Classification of ISAs

Machine language

Instruction types

Data handling and memory operations

https://en.wikipedia.org/wiki/Fred_Brooks
https://en.wikipedia.org/wiki/System/360
https://en.wikipedia.org/wiki/Virtual_machine
https://en.wikipedia.org/wiki/Bytecode
https://en.wikipedia.org/wiki/Smalltalk
https://en.wikipedia.org/wiki/Java_virtual_machine
https://en.wikipedia.org/wiki/Common_Language_Runtime
https://en.wikipedia.org/wiki/Just-in-time_compilation
https://en.wikipedia.org/wiki/Transmeta
https://en.wikipedia.org/wiki/VLIW
https://en.wikipedia.org/wiki/Complex_instruction_set_computer
https://en.wikipedia.org/wiki/Reduced_instruction_set_computer
https://en.wikipedia.org/wiki/Very_long_instruction_word
https://en.wikipedia.org/wiki/Explicitly_parallel_instruction_computing
https://en.wikipedia.org/wiki/Instruction-level_parallelism
https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/Minimal_instruction_set_computer
https://en.wikipedia.org/wiki/One_instruction_set_computer
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/Processor_register
https://en.wikipedia.org/wiki/Addressing_mode
https://en.wikipedia.org/wiki/Control_flow
https://en.wikipedia.org/wiki/Processor_register
https://en.wikipedia.org/wiki/Load_and_store


Add, subtract, multiply, or divide the values of two registers, placing the result in a register, possibly setting one or
more condition codes in a status register.

increment, decrement in some ISAs, saving operand fetch in trivial cases.

Perform bitwise operations, e.g., taking the conjunction and disjunction of corresponding bits in a pair of registers,
taking the negation of each bit in a register.
Compare two values in registers (for example, to see if one is less, or if they are equal).
Floating-point instructions for arithmetic on floating-point numbers.

Branch to another location in the program and execute instructions there.
Conditionally branch to another location if a certain condition holds.
Indirectly branch to another location.
Call another block of code, while saving the location of the next instruction as a point to return to.

Load/store data to and from a coprocessor, or exchanging with CPU registers.
Perform coprocessor operations.

Processors may include "complex" instructions in their instruction set. A single "complex" instruction does something that may take
many instructions on other computers. Such instructions are typified by instructions that take multiple steps, control multiple
functional units, or otherwise appear on a larger scale than the bulk of simple instructions implemented by the given processor. Some
examples of "complex" instructions include:

transferring multiple registers to or from memory (especially the stack) at once
moving large blocks of memory (e.g. string copy or DMA transfer)
complicated integer and floating-point arithmetic (e.g. square root, or transcendental functions such as logarithm,
sine, cosine, etc.)
SIMD instructions, a single instruction performing an operation on many homogeneous values in parallel, possibly in
dedicated SIMD registers
performing an atomic test-and-set instruction or other read-modify-write atomic instruction
instructions that perform ALU operations with an operand from memory rather than a register

Complex instructions are more common in CISC instruction sets than in RISC instruction sets, but RISC instruction sets may include
them as well. RISC instruction sets generally do not include ALU operations with memory operands, or instructions to move large
blocks of memory, but most RISC instruction sets include SIMD or vector instructions that perform the same arithmetic operation on
multiple pieces of data at the same time. SIMD instructions have the ability of manipulating large vectors and matrices in minimal
time. SIMD instructions allow easy parallelization of algorithms commonly involved in sound, image, and video processing. Various
SIMD implementations have been brought to market under trade names such as MMX, 3DNow!, and AltiVec.

On traditional architectures, an instruction includes an opcode that specifies the operation to perform, such as add contents of memory
to register—and zero or more operand specifiers, which may specify registers, memory locations, or literal data. The operand
specifiers may have addressing modes determining their meaning or may be in fixed fields. In very long instruction word (VLIW)
architectures, which include many microcode architectures, multiple simultaneous opcodes and operands are specified in a single
instruction.

Some exotic instruction sets do not have an opcode field, such as transport triggered architectures (TTA), only operand(s).

Arithmetic and logic operations

Control flow operations

Coprocessor instructions

Complex instructions

Parts of an instruction

https://en.wikipedia.org/wiki/Flag_(computing)
https://en.wikipedia.org/wiki/Status_register
https://en.wikipedia.org/wiki/Bitwise_operation
https://en.wikipedia.org/wiki/Logical_conjunction
https://en.wikipedia.org/wiki/Logical_disjunction
https://en.wikipedia.org/wiki/Logical_negation
https://en.wikipedia.org/wiki/Branch_(computer_science)
https://en.wikipedia.org/wiki/Branch_predication
https://en.wikipedia.org/wiki/Indirect_branch
https://en.wikipedia.org/wiki/Subroutine
https://en.wikipedia.org/wiki/Typified
https://en.wikipedia.org/wiki/Call_stack
https://en.wikipedia.org/wiki/String_copy
https://en.wikipedia.org/wiki/DMA_transfer
https://en.wikipedia.org/wiki/Square_root
https://en.wikipedia.org/wiki/Transcendental_function
https://en.wikipedia.org/wiki/Logarithm
https://en.wikipedia.org/wiki/Sine
https://en.wikipedia.org/wiki/Cosine
https://en.wikipedia.org/wiki/SIMD
https://en.wikipedia.org/wiki/SIMD_register
https://en.wikipedia.org/wiki/Test-and-set
https://en.wikipedia.org/wiki/Read-modify-write
https://en.wikipedia.org/wiki/Atomic_instruction
https://en.wikipedia.org/wiki/Arithmetic_logic_unit
https://en.wikipedia.org/wiki/SIMD
https://en.wikipedia.org/wiki/Vector_processing
https://en.wikipedia.org/wiki/Parallelization
https://en.wikipedia.org/wiki/MMX_(instruction_set)
https://en.wikipedia.org/wiki/3DNow!
https://en.wikipedia.org/wiki/AltiVec
https://en.wikipedia.org/wiki/Opcode
https://en.wikipedia.org/wiki/Operand
https://en.wikipedia.org/wiki/Processor_register
https://en.wikipedia.org/wiki/Addressing_mode
https://en.wikipedia.org/wiki/Very_long_instruction_word
https://en.wikipedia.org/wiki/Microcode
https://en.wikipedia.org/wiki/Transport_triggered_architecture
https://en.wikipedia.org/wiki/Arithmetic_logic_unit
https://en.wikipedia.org/wiki/Control_flow
https://en.wikipedia.org/wiki/Coprocessor


The Forth virtual machine and other "0-operand"
instruction sets lack any operand specifier fields, such
as some stack machines including NOSC.[3]

Conditional instructions often have a predicate field—a
few bits that encode the specific condition to cause the
operation to be performed rather than not performed.
For example, a conditional branch instruction will be
executed, and the branch taken, if the condition is true,
so that execution proceeds to a different part of the
program, and not executed, and the branch not taken, if
the condition is false, so that execution continues
sequentially. Some instruction sets also have
conditional moves, so that the move will be executed,
and the data stored in the target location, if the condition is true, and not executed, and the target location not modified, if the
condition is false. Similarly, IBM z/Architecture has a conditional store instruction. A few instruction sets include a predicate field in
every instruction; this is called branch predication.

The size or length of an instruction varies widely, from as little as four bits in some microcontrollers to many hundreds of bits in
some VLIW systems. Processors used in personal computers, mainframes, and supercomputers have instruction sizes between 8 and
64 bits. The longest possible instruction on x86 is 15 bytes (120 bits).[4] Within an instruction set, different instructions may have
different lengths. In some architectures, notably most reduced instruction set computers (RISC), instructions are a fixed length,
typically corresponding with that architecture's word size. In other architectures, instructions have variable length, typically integral
multiples of a byte or a halfword. Some, such as the ARM with Thumb-extension have mixed variable encoding, that is two fixed,
usually 32-bit and 16-bit encodings, where instructions can not be mixed freely but must be switched between on a branch (or
exception boundary in ARMv8).

A RISC instruction set normally has a fixed instruction length (often 4 bytes = 32 bits), whereas a typical CISC instruction set may
have instructions of widely varying length (1 to 15 bytes for x86). Fixed-length instructions are less complicated to handle than
variable-length instructions for several reasons (not having to check whether an instruction straddles a cache line or virtual memory
page boundary[5] for instance), and are therefore somewhat easier to optimize for speed.

The instructions constituting a program are rarely specified using their internal, numeric form (machine code); they may be specified
by programmers using an assembly language or, more commonly, may be generated from programming languages by compilers.

The design of instruction sets is a complex issue. There were two stages in history for the microprocessor. The first was the CISC
(Complex Instruction Set Computer), which had many different instructions. In the 1970s, however, places like IBM did research and
found that many instructions in the set could be eliminated. The result was the RISC (Reduced Instruction Set Computer), an
architecture that uses a smaller set of instructions. A simpler instruction set may offer the potential for higher speeds, reduced
processor size, and reduced power consumption. However, a more complex set may optimize common operations, improve memory
and cache efficiency, or simplify programming.

Some instruction set designers reserve one or more opcodes for some kind of system call or software interrupt. For example, MOS
Technology 6502 uses 00H, Zilog Z80 uses the eight codes C7,CF,D7,DF,E7,EF,F7,FFH

[6] while Motorola 68000 use codes in the
range A000..AFFFH.

One instruction may have several fields, which identify the
logical operation, and may also include source and destination
addresses and constant values. This is the MIPS "Add
Immediate" instruction, which allows selection of source and
destination registers and inclusion of a small constant.

Instruction length

Representation

Design

https://en.wikipedia.org/wiki/Forth_virtual_machine
https://en.wikipedia.org/wiki/0-operand_instruction_set
https://en.wikipedia.org/wiki/Stack_machine
https://en.wikipedia.org/wiki/Z/Architecture
https://en.wikipedia.org/wiki/Branch_predication
https://en.wikipedia.org/wiki/Microcontroller
https://en.wikipedia.org/wiki/Personal_computer
https://en.wikipedia.org/wiki/Mainframe_computer
https://en.wikipedia.org/wiki/Supercomputer
https://en.wikipedia.org/wiki/Reduced_instruction_set_computer
https://en.wikipedia.org/wiki/Word_(data_type)
https://en.wikipedia.org/wiki/Byte
https://en.wikipedia.org/wiki/Halfword
https://en.wikipedia.org/wiki/ARMv7
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/Assembly_language
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/CPU_cache
https://en.wikipedia.org/wiki/System_call
https://en.wikipedia.org/wiki/Software_interrupt
https://en.wikipedia.org/wiki/MOS_Technology_6502
https://en.wikipedia.org/wiki/Zilog_Z80
https://en.wikipedia.org/wiki/Motorola_68000
https://en.wikipedia.org/wiki/File:Mips32_addi.svg


Fast virtual machines are much easier to implement if an instruction set meets the Popek and Goldberg virtualization requirements.

The NOP slide used in immunity-aware programming is much easier to implement if the "unprogrammed" state of the memory is
interpreted as a NOP.

On systems with multiple processors, non-blocking synchronization algorithms are much easier to implement if the instruction set
includes support for something such as "fetch-and-add", "load-link/store-conditional" (LL/SC), or "atomic compare-and-swap".

Any given instruction set can be implemented in a variety of ways. All ways of implementing a particular instruction set provide the
same programming model, and all implementations of that instruction set are able to run the same executables. The various ways of
implementing an instruction set give different tradeoffs between cost, performance, power consumption, size, etc.

When designing the microarchitecture of a processor, engineers use blocks of "hard-wired" electronic circuitry (often designed
separately) such as adders, multiplexers, counters, registers, ALUs, etc. Some kind of register transfer language is then often used to
describe the decoding and sequencing of each instruction of an ISA using this physical microarchitecture. There are two basic ways
to build a control unit to implement this description (although many designs use middle ways or compromises):

1. Some computer designs "hardwire" the complete instruction set decoding and sequencing (just like the rest of the
microarchitecture).

2. Other designs employ microcode routines or tables (or both) to do this—typically as on-chip ROMs or PLAs or both
(although separate RAMs and ROMs have been used historically). The Western Digital MCP-1600 is an older
example, using a dedicated, separate ROM for microcode.

Some designs use a combination of hardwired design and microcode for the control unit.

Some CPU designs use a writable control store—they compile the instruction set to a writable RAM or flash inside the CPU (such as
the Rekursiv processor and the Imsys Cjip),[7] or an FPGA (reconfigurable computing).

An ISA can also be emulated in software by an interpreter. Naturally, due to the interpretation overhead, this is slower than directly
running programs on the emulated hardware, unless the hardware running the emulator is an order of magnitude faster. Today, it is
common practice for vendors of new ISAs or microarchitectures to make software emulators available to software developers before
the hardware implementation is ready.

Often the details of the implementation have a strong influence on the particular instructions selected for the instruction set. For
example, many implementations of the instruction pipeline only allow a single memory load or memory store per instruction, leading
to a load-store architecture (RISC). For another example, some early ways of implementing the instruction pipeline led to a delay
slot.

The demands of high-speed digital signal processing have pushed in the opposite direction—forcing instructions to be implemented
in a particular way. For example, to perform digital filters fast enough, the MAC instruction in a typical digital signal processor
(DSP) must use a kind of Harvard architecture that can fetch an instruction and two data words simultaneously, and it requires a
single-cycle multiply–accumulate multiplier.

In early computers, memory was expensive, so minimizing the size of a program to make sure it would fit in the limited memory was
often central. Thus the combined size of all the instructions needed to perform a particular task, the code density, was an important
characteristic of any instruction set. Computers with high code density often have complex instructions for procedure entry,
parameterized returns, loops, etc. (therefore retroactively named Complex Instruction Set Computers, CISC). However, more typical,
or frequent, "CISC" instructions merely combine a basic ALU operation, such as "add", with the access of one or more operands in

Instruction set implementation

Code density

https://en.wikipedia.org/wiki/Popek_and_Goldberg_virtualization_requirements
https://en.wikipedia.org/wiki/NOP_slide
https://en.wikipedia.org/wiki/Immunity-aware_programming
https://en.wikipedia.org/wiki/NOP
https://en.wikipedia.org/wiki/Non-blocking_synchronization
https://en.wikipedia.org/wiki/Fetch-and-add
https://en.wikipedia.org/wiki/Load-link/store-conditional
https://en.wikipedia.org/wiki/Compare-and-swap
https://en.wikipedia.org/wiki/Programming_model
https://en.wikipedia.org/wiki/Microarchitecture
https://en.wikipedia.org/wiki/Register_transfer_language
https://en.wikipedia.org/wiki/Control_unit
https://en.wikipedia.org/wiki/Microcode
https://en.wikipedia.org/wiki/Read-only_memory
https://en.wikipedia.org/wiki/Programmable_logic_array
https://en.wikipedia.org/wiki/Read-only_memory#Historical_examples
https://en.wikipedia.org/wiki/Western_Digital
https://en.wikipedia.org/wiki/MCP-1600
https://en.wikipedia.org/wiki/Writable_control_store
https://en.wikipedia.org/wiki/RAM
https://en.wikipedia.org/wiki/Flash_memory
https://en.wikipedia.org/wiki/Rekursiv
https://en.wikipedia.org/w/index.php?title=Imsys&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=Cjip&action=edit&redlink=1
https://en.wikipedia.org/wiki/Reconfigurable_computing
https://en.wikipedia.org/wiki/Emulator
https://en.wikipedia.org/wiki/Interpreter_(computing)
https://en.wikipedia.org/wiki/Instruction_pipeline
https://en.wikipedia.org/wiki/Load-store_architecture
https://en.wikipedia.org/wiki/Instruction_pipeline
https://en.wikipedia.org/wiki/Delay_slot
https://en.wikipedia.org/wiki/Digital_signal_processor
https://en.wikipedia.org/wiki/Harvard_architecture
https://en.wikipedia.org/wiki/Multiply%E2%80%93accumulate
https://en.wikipedia.org/wiki/Multiplication_ALU
https://en.wikipedia.org/wiki/Complex_instruction_set_computer


memory (using addressing modes such as direct, indirect, indexed, etc.). Certain architectures may allow two or three operands
(including the result) directly in memory or may be able to perform functions such as automatic pointer increment, etc. Software-
implemented instruction sets may have even more complex and powerful instructions.

Reduced instruction-set computers, RISC, were first widely implemented during a period of rapidly growing memory subsystems.
They sacrifice code density to simplify implementation circuitry, and try to increase performance via higher clock frequencies and
more registers. A single RISC instruction typically performs only a single operation, such as an "add" of registers or a "load" from a
memory location into a register. A RISC instruction set normally has a fixed instruction length, whereas a typical CISC instruction set
has instructions of widely varying length. However, as RISC computers normally require more and often longer instructions to
implement a given task, they inherently make less optimal use of bus bandwidth and cache memories.

Certain embedded RISC ISAs like Thumb and AVR32 typically exhibit very high density owing to a technique called code
compression. This technique packs two 16-bit instructions into one 32-bit instruction, which is then unpacked at the decode stage and
executed as two instructions.[8]

Minimal instruction set computers (MISC) are a form of stack machine, where there are few separate instructions (16-64), so that
multiple instructions can be fit into a single machine word. These type of cores often take little silicon to implement, so they can be
easily realized in an FPGA or in a multi-core form. The code density of MISC is similar to the code density of RISC; the increased
instruction density is offset by requiring more of the primitive instructions to do a task.

There has been research into executable compression as a mechanism for improving code density. The mathematics of Kolmogorov
complexity describes the challenges and limits of this.

Instruction sets may be categorized by the maximum number of operands explicitly specified in instructions.

(In the examples that follow, a, b, and c are (direct or calculated) addresses referring to memory cells, while reg1 and so on refer to
machine registers.)

C = A+B 

0-operand (zero-address machines), so called stack machines: All arithmetic operations take place using the top one
or two positions on the stack: push a, push b, add, pop c.

C = A+B needs four instructions. For stack machines, the terms "0-operand" and "zero-address" apply to
arithmetic instructions, but not to all instructions, as 1-operand push and pop instructions are used to access
memory.

1-operand (one-address machines), so called accumulator machines, include early computers and many small
microcontrollers: most instructions specify a single right operand (that is, constant, a register, or a memory location),
with the implicit accumulator as the left operand (and the destination if there is one): load a, add b, store c.

C = A+B needs three instructions.

2-operand — many CISC and RISC machines fall under this category:

CISC — move A to C; then add B to C.

C = A+B needs two instructions. This effectively 'stores' the result without an explicit store instruction.

CISC — Often machines are limited to one memory operand per instruction: load a,reg1; add b,reg1;
store reg1,c; This requires a load/store pair for any memory movement regardless of whether the add result
is an augmentation stored to a different place, as in C = A+B, or the same memory location: A = A+B.

C = A+B needs three instructions.

RISC — Requiring explicit memory loads, the instructions would be: load a,reg1; load b,reg2; add
reg1,reg2; store reg2,c.

C = A+B needs four instructions.

Number of operands

https://en.wikipedia.org/wiki/Addressing_mode
https://en.wikipedia.org/wiki/Reduced_instruction_set_computer
https://en.wikipedia.org/wiki/ARM_architecture#Thumb
https://en.wikipedia.org/wiki/AVR32
https://en.wikipedia.org/wiki/Minimal_instruction_set_computer
https://en.wikipedia.org/wiki/Stack_machine
https://en.wikipedia.org/wiki/Field-programmable_gate_array
https://en.wikipedia.org/wiki/Multi-core
https://en.wikipedia.org/wiki/Executable_compression
https://en.wikipedia.org/wiki/Kolmogorov_complexity
https://en.wikipedia.org/wiki/Stack_machine
https://en.wikipedia.org/wiki/Accumulator_machine
https://en.wikipedia.org/wiki/Microcontroller
https://en.wikipedia.org/wiki/Accumulator_(computing)
http://cs.smith.edu/~thiebaut/ArtOfAssembly/CH04/CH04-3.html#HEADING3-79


3-operand, allowing better reuse of data:[5]

CISC — It becomes either a single instruction: add a,b,c

C = A+B needs one instruction.

CISC — Or, on machines limited to two memory operands per instruction, move a,reg1; add reg1,b,c;

C = A+B needs two instructions.

RISC — arithmetic instructions use registers only, so explicit 2-operand load/store instructions are needed: load
a,reg1; load b,reg2; add reg1+reg2->reg3; store reg3,c;

C = A+B needs four instructions.
Unlike 2-operand or 1-operand, this leaves all three values a, b, and c in registers available for further
reuse.[5]

more operands—some CISC machines permit a variety of addressing modes that allow more than 3 operands
(registers or memory accesses), such as the VAX "POLY" polynomial evaluation instruction.

Due to the large number of bits needed to encode the three registers of a 3-operand instruction, RISC architectures that have 16-bit
instructions are invariably 2-operand designs, such as the Atmel AVR, TI MSP430, and some versions of ARM Thumb. RISC
architectures that have 32-bit instructions are usually 3-operand designs, such as the ARM, AVR32, MIPS, Power ISA, and SPARC
architectures.

Each instruction specifies some number of operands (registers, memory locations, or immediate values) explicitly. Some instructions
give one or both operands implicitly, such as by being stored on top of the stack or in an implicit register. If some of the operands are
given implicitly, fewer operands need be specified in the instruction. When a "destination operand" explicitly specifies the
destination, an additional operand must be supplied. Consequently, the number of operands encoded in an instruction may differ from
the mathematically necessary number of arguments for a logical or arithmetic operation (the arity). Operands are either encoded in
the "opcode" representation of the instruction, or else are given as values or addresses following the instruction.

Register pressure measures the availability of free registers at any point in time during the program execution. Register pressure is
high when a large number of the available registers are in use; thus, the higher the register pressure, the more often the register
contents must be spilled into memory. Increasing the number of registers in an architecture decreases register pressure but increases
the cost.[9]

While embedded instruction sets such as Thumb suffer from extremely high register pressure because they have small register sets,
general-purpose RISC ISAs like MIPS and Alpha enjoy low register pressure. CISC ISAs like x86-64 offer low register pressure
despite having smaller register sets. This is due to the many addressing modes and optimizations (such as sub-register addressing,
memory operands in ALU instructions, absolute addressing, PC-relative addressing, and register-to-register spills) that CISC ISAs
offer.[10]

Comparison of instruction set architectures
Computer architecture
CPU design
Emulator
Simulator
List of instruction sets
Instruction set simulator
OVPsim full systems simulator providing ability to create/model/emulate any instruction set using C and standard
APIs
Register transfer language (RTL)
Micro-operation

Register pressure

See also

https://en.wikipedia.org/wiki/VAX
https://en.wikipedia.org/wiki/TI_MSP430
https://en.wikipedia.org/wiki/ARM_Thumb
https://en.wikipedia.org/wiki/ARM_architecture
https://en.wikipedia.org/wiki/AVR32
https://en.wikipedia.org/wiki/MIPS_architecture
https://en.wikipedia.org/wiki/Power_Architecture
https://en.wikipedia.org/wiki/SPARC
https://en.wikipedia.org/wiki/Stack_(data_structure)
https://en.wikipedia.org/wiki/Arity
https://en.wikipedia.org/wiki/Register_spilling
https://en.wikipedia.org/wiki/ARM_Thumb
https://en.wikipedia.org/wiki/MIPS_architecture
https://en.wikipedia.org/wiki/DEC_Alpha
https://en.wikipedia.org/wiki/Comparison_of_instruction_set_architectures
https://en.wikipedia.org/wiki/Computer_architecture
https://en.wikipedia.org/wiki/CPU_design
https://en.wikipedia.org/wiki/Emulator
https://en.wikipedia.org/wiki/Simulator
https://en.wikipedia.org/wiki/List_of_instruction_sets
https://en.wikipedia.org/wiki/Instruction_set_simulator
https://en.wikipedia.org/wiki/OVPsim
https://en.wikipedia.org/wiki/Register_transfer_language
https://en.wikipedia.org/wiki/Micro-operation


Bowen, Jonathan P. (July–August 1985). "Standard Microprocessor Programming Cards". 9 (6): 274–290.
doi:10.1016/0141-9331(85)90116-4.

Programming Textfiles: Bowen's Instruction Summary Cards
Mark Smotherman's Historical Computer Designs Page

Retrieved from "https://en.wikipedia.org/w/index.php?title=Instruction_set_architecture&oldid=811740043"

This page was last edited on 23 November 2017, at 16:55.

Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using this
site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia
Foundation, Inc., a non-profit organization.

1. Pugh, Emerson W.; Johnson, Lyle R.; Palmer, John H. (1991). IBM's 360 and Early 370 Systems (https://www.amaz
on.com/IBMs-Early-Systems-History-Computing/dp/0262161230). MIT Press. ISBN 0-262-16123-0.

2. Crystal Chen; Greg Novick; Kirk Shimano (December 16, 2006). "RISC Architecture: RISC vs. CISC" (http://cs.stanfo
rd.edu/people/eroberts/courses/soco/projects/risc/risccisc/). cs.stanford.edu. Retrieved February 21, 2015.

3. "Forth Resources: NOSC Mail List Archive" (http://strangegizmo.com/forth/NOSC/). strangegizmo.com. Retrieved
2014-07-25.

4. "Intel® 64 and IA-32 Architectures Software Developer's Manual" (http://www.intel.com/content/www/us/en/processo
rs/architectures-software-developer-manuals.html/). Intel Corporation. Retrieved 12 July 2012.

5. The evolution of RISC technology at IBM by John Cocke (http://domino.watson.ibm.com/tchjr/journalindex.nsf/0/22d0
6c5aa961e78085256bfa0067fa93?OpenDocument) – IBM Journal of R&D, Volume 44, Numbers 1/2, p.48 (2000)

6. Ganssle, Jack. "Proactive Debugging" (http://embedded.com/showArticle.jhtml?articleID=9900044). Published
February 26, 2001.

7. "Great Microprocessors of the Past and Present (V 13.4.0)" (http://cpushack.net/CPU/cpu7.html). cpushack.net.
Retrieved 2014-07-25.

8. Weaver, Vincent M.; McKee, Sally A. (2009). Code density concerns for new architectures (http://ieeexplore.ieee.org/
xpls/abs_all.jsp?arnumber=5413117&tag=1). IEEE International Conference on Computer Design.

9. Page, Daniel (2009). "11. Compilers". A Practical Introduction to Computer Architecture. Springer. p. 464. ISBN 978-
1-84882-255-9.

10. Venkat, Ashish; Tullsen, Dean M. (2014). Harnessing ISA Diversity: Design of a Heterogeneous-ISA Chip
Multiprocessor (http://dl.acm.org/citation.cfm?id=2665692). 41st Annual International Symposium on Computer
Architecture.

References

Further reading

External links

https://en.wikipedia.org/wiki/Jonathan_Bowen
https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1016%2F0141-9331%2885%2990116-4
http://www.textfiles.com/programming/CARDS/
http://www.cs.clemson.edu/~mark/hist.html
https://en.wikipedia.org/w/index.php?title=Instruction_set_architecture&oldid=811740043
https://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License
https://wikimediafoundation.org/wiki/Terms_of_Use
https://wikimediafoundation.org/wiki/Privacy_policy
https://www.wikimediafoundation.org/
https://www.amazon.com/IBMs-Early-Systems-History-Computing/dp/0262161230
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-262-16123-0
http://cs.stanford.edu/people/eroberts/courses/soco/projects/risc/risccisc/
http://strangegizmo.com/forth/NOSC/
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html/
http://domino.watson.ibm.com/tchjr/journalindex.nsf/0/22d06c5aa961e78085256bfa0067fa93?OpenDocument
http://embedded.com/showArticle.jhtml?articleID=9900044
http://cpushack.net/CPU/cpu7.html
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5413117&tag=1
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-1-84882-255-9
http://dl.acm.org/citation.cfm?id=2665692

