
X86 Assembly/Machine Language Conversion

Relationship to Machine Code

CISC and RISC

8086 instruction format (16 bit)
Mod / Reg / R/M tables
Example: Absolute addressing
Example: Immediate operand

x86-32 Instructions (32 bit)

x86-64 Instructions (64 bit)

X86 assembly instructions have a one-to-one relationship with the underlying machine instructions. This means that essentially we
can convert assembly instructions into machine instructions with a look-up table. This page will talk about some of the conversions
from assembly language to machine language.

The x86 architecture is a complex instruction set computer (CISC) architecture. Amongst other things, this means that the
instructions for the x86 architecture are of varying lengths. This can make the processes of assembly, disassembly and instruction
decoding more complicated, because the instruction length needs to be calculated for each instruction.

x86 instructions can be anywhere between 1 and 15 bytes long. The length is defined separately for each instruction, depending on
the available modes of operation of the instruction, the number of required operands and more.

This is the general instruction form for the 8086 sequentially in main memory:

Prefixes (optional)

Opcode (first byte) D W

Opcode 2 (occasional second byte)

MOD Reg R/M

Displacement or data (occasional: 1, 2 or 4 bytes)

Prefixes
Optional prefixes which change the operation of the instruction

D
(1 bit) Direction. 1 = Register is Destination, 0 = Register is source.

W
(1 bit) Operation size. 1 = Word, 0 = byte.

Opcode

Contents

Relationship to Machine Code

CISC and RISC

8086 instruction format (16 bit)

the opcode is a 6 bit quantity that determines what instruction family the code is
MOD (Mod)

(2 bits) Register mode.
Reg

(3 bits) Register. Each register has an identifier.
R/M (r/m)

(3 bits) Register/Memory operand

Not all instructions have W or D bits; in some cases, the width of the operation is either irrelevant or implicit, and for other
operations the data direction is irrelevant.

Notice that Intel instruction format is little-endian, which means that the lowest-significance bytes are closest to absolute address 0.
Thus, words are stored low-byte first; the value 1234H is stored in memory as 34H 12H. By convention, most-significant bits are
always shown to the left within the byte, so 34H would be 00110100B.

After the initial 2 bytes, each instruction can have many additional addressing/immediate data bytes.

Mod Displacement
00 If r/m is 110, Displacement (16 bits) is address; otherwise, no displacement
01 Eight-bit displacement, sign-extended to 16 bits
10 16-bit displacement (example: MOV [BX + SI]+ displacement,al)
11 r/m is treated as a second "reg" field

Reg W = 0 W = 1 double word
000 AL AX EAX
001 CL CX ECX
010 DL DX EDX
011 BL BX EBX
100 AH SP ESP
101 CH BP EBP
110 DH SI ESI
111 BH DI EDI

r/m Operand address
000 (BX) + (SI) + displacement (0, 1 or 2 bytes long)
001 (BX) + (DI) + displacement (0, 1 or 2 bytes long)
010 (BP) + (SI) + displacement (0, 1 or 2 bytes long)
011 (BP) + (DI) + displacement (0, 1 or 2 bytes long)
100 (SI) + displacement (0, 1 or 2 bytes long)
101 (DI) + displacement (0, 1 or 2 bytes long)
110 (BP) + displacement unless mod = 00 (see mod table)
111 (BX) + displacement (0, 1 or 2 bytes long)

Note the special meaning of MOD 00, r/m 110. Normally, this would be expected to be the operand [BP]. However, instead the 16-bit
displacement is treated as the absolute address. To encode the value [BP], you would use mod = 01, r/m = 110, 8-bit displacement =
0.

Mod / Reg / R/M tables

Example: Absolute addressing

Let's translate the following instruction into machine code:

XOR CL, [12H]

Note that this is XORing CL with the contents of address 12H – the square brackets are a common indirection indicator. The opcode
for XOR is "001100dw". D is 1 because the CL register is the destination. W is 0 because we have a byte of data. Our first byte
therefore is "00110010".

Now, we know that the code for CL is 001. Reg thus has the value 001. The address is specified as a simple displacement, so the
MOD value is 00 and the R/M is 110. Byte 2 is thus (00 001 110b).

Byte 3 and 4 contain the effective address, low-order byte first, 0012H as 12H 00H, or (00010010b) (00000000b)

All together,

XOR CL, [12H] = 00110010 00001110 00010010 00000000 = 32H 0EH 12H 00H

Now, if we were to want to use an immediate operand, as follows:

XOR CL, 12H

In this case, because there are no square brackets, 12H is immediate: it is the number we are going to XOR against. The opcode for
an immediate XOR is 1000000w; in this case, we are using a byte, so w is 0. So our first byte is (10000000b).

The second byte, for an immediate operation, takes the form "mod 110 r/m". Since the destination is a register, mod is 11, making the
r/m field a register value. We already know that the register value for CL is 001, so our second byte is (11 110 001b).

The third byte (and fourth byte, if this were a word operation) are the immediate data. As it is a byte, there is only one byte of data,
12H = (00010010b).

All together, then:

XOR CL, 12H = 10000000 11110001 00010010 = 80H F1H 12H

The 32-bit instructions are encoded in a very similar way to the 16-bit instructions, except (by default) they act upon dword quantities
rather than words. Also, they support a much more flexible memory addressing format, which is made possible by the addition of an
SIB "scale-index-base" byte, which follows the ModR/M byte.

Retrieved from "https://en.wikibooks.org/w/index.php?
title=X86_Assembly/Machine_Language_Conversion&oldid=2996091"

This page was last edited on 23 September 2015, at 22:11.

Text is available under the Creative Commons Attribution-ShareAlike License.; additional terms may apply. By using this
site, you agree to the Terms of Use and Privacy Policy.

Example: Immediate operand

x86-32 Instructions (32 bit)

x86-64 Instructions (64 bit)

https://en.wikibooks.org/w/index.php?title=X86_Assembly/Machine_Language_Conversion&oldid=2996091
https://creativecommons.org/licenses/by-sa/3.0/
https://wikimediafoundation.org/wiki/Terms_of_Use
https://wikimediafoundation.org/wiki/Privacy_policy

