
Endianness
Endianness refers to the sequential order in which bytes are arranged into larger numerical values when stored in memory or when
transmitted over digital links. Endianness is of interest in computer science because two conflicting and incompatible formats are in
common use: words may be represented in big-endian or little-endian format, depending on whether bits or bytes or other
components are ordered from the big end (most significant bit) or the little end (least significant bit).

In big-endian format, whenever addressing memory or sending/storing words bytewise, the most significant byte — the byte
containing the most significant bit — is stored first (has the lowest address) or sent first, then the following bytes are stored or sent in
decreasing significance order, with the least significant byte — the one containing the least significant bit — stored last (having the
highest address) or sent last.

Little-endian format reverses this order: the sequence addresses/sends/stores the least significant byte first (lowest address) and the
most significant byte last (highest address). Most computer systems prefer a single format for all its data; using the system's native
format is automatic. But when reading memory or receiving transmitted data from a different computer system, it is often required to
process and translate data between the preferred native endianness format to the opposite format.

The order of bits within a byte or word can also have endianness (as discussed later); however, a byte is typically handled as a single
numerical value or character symbol and so bit sequence order is obviated.

Both big and little forms of endianness are widely used in digital electronics. The choice of endianness for a new design is often
arbitrary, but later technology revisions and updates perpetuate the existing endianness and many other design attributes to maintain
backward compatibility. As examples, the IBM z/Architecture mainframes and the Motorola 68000 series use big-endian while the
Intel x86 processors use little-endian. The designers of System/360, the ancestor of z/Architecture, chose its endianness in the 1960s;
the designers of the Motorola 68000 and the Intel 8086, the first members of the 68000 and x86 families, chose their endianness in
the 1970s.

Big-endian is the most common format in data networking; fields in the protocols of the Internet protocol suite, such as IPv4, IPv6,
TCP, and UDP, are transmitted in big-endian order. For this reason, big-endian byte order is also referred to as network byte order.
Little-endian storage is popular for microprocessors, in part due to significant influence on microprocessor designs by Intel
Corporation. Mixed forms also exist, for instance the ordering of bytes in a 16-bit word may differ from the ordering of 16-bit words
within a 32-bit word. Such cases are sometimes referred to as mixed-endian or middle-endian. There are also some bi-endian
processors that operate in either little-endian or big-endian mode.

Compare also to the Head-initial vs. head-final languages in linguistics.

Illustration

Etymology

Hardware
History
Current architectures
Bi-endianness
Floating point
Optimization
Calculation order

Mapping multi-byte binary values to memory

Contents

https://en.wikipedia.org/wiki/Byte
https://en.wikipedia.org/wiki/Word_(data_type)
https://en.wikipedia.org/wiki/Computer_data_storage
https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Most_significant_bit
https://en.wikipedia.org/wiki/Least_significant_bit
https://en.wikipedia.org/wiki/Most_significant_bit
https://en.wikipedia.org/wiki/Least_significant_bit
https://en.wikipedia.org/wiki/Backward_compatibility
https://en.wikipedia.org/wiki/Z/Architecture
https://en.wikipedia.org/wiki/Motorola_68000_series
https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/System/360
https://en.wikipedia.org/wiki/Motorola_68000
https://en.wikipedia.org/wiki/Intel_8086
https://en.wikipedia.org/wiki/Internet_protocol_suite
https://en.wikipedia.org/wiki/IPv4
https://en.wikipedia.org/wiki/IPv6
https://en.wikipedia.org/wiki/Transmission_Control_Protocol
https://en.wikipedia.org/wiki/User_Datagram_Protocol
https://en.wikipedia.org/wiki/Intel
https://en.wikipedia.org/wiki/Head_(linguistics)

Examples
Big-endian

Atomic element size 8-bit
Atomic element size 16-bit

Little-endian
Atomic element size 8-bit
Atomic element size 16-bit
When organized by byte addresses

Middle-endian

Files and byte swap

Networking

Bit endianness

References

Further reading

External links

Big-endianness may be demonstrated by writing a decimal number, say one hundred twenty-
three, on paper in the usual positional notation understood by a numerate reader: 123. The
digits are written starting from the left and to the right, with the most significant digit, 1,
written first. This is analogous to the lowest address of memory being used first. This is an
example of a big-endian convention taken from daily life.

The little-endian way of writing the same number, one hundred twenty-three, would place the
hundreds-digit 1 in the right-most position: 321. A person following conventional big-endian
place-value order, who is not aware of this special ordering, would read a different number:
three hundred and twenty one. Endianness in computing is similar, but it usually applies to
the ordering of bytes, rather than of digits.

The illustrations to the right, where a is a memory address, show big-endian and little-endian
storage in memory.

Danny Cohen introduced the terms Little-Endian and Big-Endian for byte ordering in an
article from 1980.[1][2] In this technical and political examination of byte ordering issues, the
"endian" names were drawn from Jonathan Swift's 1726 satire, Gulliver's Travels, in which civil war erupts over whether the big end
or the little end of a boiled egg is the proper end to crack open, which is analogous to counting from the end that contains the most
significant bit or the least significant bit.[3][4]

Computer memory consists of a sequence of storage cells. Each cell is identified in hardware and software by its memory address. If
the total number of storage cells in memory is n, then addresses are enumerated from 0 to n-1. Computer programs often use data
structures of fields that may consist of more data than is stored in one memory cell. For the purpose of this article where its use as an
operand of an instruction is relevant, a field consists of a consecutive sequence of bytes and represents a simple data value. In
addition to that, it has to be of numeric type in some positional number system (mostly base-10 or base-2 — or base-256 in case of 8-
bit bytes).[5] In such a number system the "value" of a digit is determined not only by its value as a single digit, but also by the
position it holds in the complete number, its "significance". These positions can be mapped to memory mainly in two ways:[6]

Illustration

Etymology

Hardware

https://en.wikipedia.org/wiki/Positional_notation
https://en.wikipedia.org/wiki/Memory_address
https://en.wikipedia.org/wiki/Danny_Cohen_(engineer)
https://en.wikipedia.org/wiki/Jonathan_Swift
https://en.wikipedia.org/wiki/Gulliver%27s_Travels#Part_I:_A_Voyage_to_Lilliput
https://en.wikipedia.org/wiki/Computer_memory
https://en.wikipedia.org/wiki/Memory_address
https://en.wikipedia.org/wiki/Field_(computer_science)
https://en.wikipedia.org/wiki/Byte
https://en.wikipedia.org/wiki/Positional_notation
https://en.wikipedia.org/wiki/File:Big-Endian.svg
https://en.wikipedia.org/wiki/File:Little-Endian.svg

increasing numeric significance with increasing memory addresses (or increasing time), known as little-endian, and

decreasing numeric significance with increasing memory addresses (or increasing time), known as big-endian[7]

While the Intel microprocessor product line (most notable amongst others) has become a popular architecture, many historical and
extant processors use a big-endian memory representation, commonly referred to as network order, as used in the Internet protocol
suite, either exclusively or as a design option; others use yet another scheme called "middle-endian", "mixed-endian" or "PDP-11-
endian".

The IBM System/360 uses big-endian byte order, as do its successors System/370, ESA/390, and z/Architecture. The PDP-10 also
uses big-endian addressing for byte-oriented instructions. The IBM Series/1 minicomputer also use big-endian byte order.

Dealing with data of different endianness is sometimes termed the NUXI problem.[8] This terminology alludes to the byte order
conflicts encountered while adapting UNIX, which ran on the mixed-endian PDP-11, to a big-endian IBM Series/1 computer. Unix
was one of the first systems to allow the same code to be compiled for platforms with different internal representations. One of the
first programs converted was supposed to print out Unix, but on the Series/1 it printed nUxi instead.[9]

The Datapoint 2200 uses simple bit-serial logic with little-endian to facilitate carry propagation. When Intel developed the 8008
microprocessor for Datapoint, they used little-endian for compatibility. However, as Intel was unable to deliver the 8008 in time,
Datapoint used a medium scale integration equivalent, but the little-endianness was retained in most Intel designs.[10][11] Intel MCS-
48 is also little-endian, as are the well-known DEC Alpha, Atmel AVR, VAX and many more.

The Motorola 6800 / 6801, the 6809 and the 68000 series of processors used the big-endian format, and for this reason, it is also
known as the "Motorola convention".[12][13]

The Intel 8051, contrary to other Intel processors, expects 16-bit addresses for LJMP and LCALL in big-endian format; however,
xCALL instructions store the return address onto the stack in little-endian format.[14]

SPARC historically used big-endian until version 9, which is bi-endian; similarly early IBM POWER processors were big-endian, but
now the PowerPC and Power Architecture descendants are bi-endian. The ARM architecture was little-endian before version 3 when
it became bi-endian.

Other well-known little-endian processor architectures include MOS Technology 6502 (including Western Design Center 65802 and
65C816), Zilog Z80 (including Z180 and eZ80) and Altera Nios II.

The Intel x86 and also AMD64 / x86-64 series of processors use the little-endian format, and for this reason, it is also known in the
industry as the "Intel convention".[12][13]

The few current big-endian architectures include the IBM z/Architecture, Freescale ColdFire (which is Motorola 68000 series-
based), Xilinx Microblaze, SuperH, Atmel AVR32.

As a consequence of its original implementation on the Intel x86 platform, the operating system-independent FAT file system is
defined to use little-endian byte ordering, even on platforms using other endiannesses natively.

Some architectures (including ARM versions 3 and above, PowerPC, Alpha, SPARC V9, MIPS, PA-RISC, SuperH SH-4 and IA-64)
feature a setting which allows for switchable endianness in data fetches and stores, instruction fetches, or both. This feature can
improve performance or simplify the logic of networking devices and software. The word bi-endian, when said of hardware, denotes

History

Current architectures

Bi-endianness

https://en.wikipedia.org/wiki/Microprocessor
https://en.wikipedia.org/wiki/Endianness#Networking
https://en.wikipedia.org/wiki/Internet_protocol_suite
https://en.wikipedia.org/wiki/Endianness#Middle
https://en.wikipedia.org/wiki/PDP-11
https://en.wikipedia.org/wiki/IBM_System/360
https://en.wikipedia.org/wiki/System/370
https://en.wikipedia.org/wiki/ESA/390
https://en.wikipedia.org/wiki/Z/Architecture
https://en.wikipedia.org/wiki/PDP-10
https://en.wikipedia.org/wiki/IBM_Series/1
https://en.wikipedia.org/wiki/Porting
https://en.wikipedia.org/wiki/UNIX
https://en.wikipedia.org/wiki/Datapoint_2200
https://en.wikipedia.org/wiki/Carry_propagation
https://en.wikipedia.org/wiki/Intel_8008
https://en.wikipedia.org/wiki/Medium_scale_integration
https://en.wikipedia.org/wiki/MCS-48
https://en.wikipedia.org/wiki/DEC_Alpha
https://en.wikipedia.org/wiki/Atmel_AVR
https://en.wikipedia.org/wiki/VAX
https://en.wikipedia.org/wiki/Motorola_6800
https://en.wikipedia.org/wiki/6809
https://en.wikipedia.org/wiki/68000
https://en.wikipedia.org/wiki/8051
https://en.wikipedia.org/wiki/SPARC
https://en.wikipedia.org/wiki/PowerPC
https://en.wikipedia.org/wiki/Power_Architecture
https://en.wikipedia.org/wiki/ARM_architecture
https://en.wikipedia.org/wiki/MOS_Technology_6502
https://en.wikipedia.org/wiki/Western_Design_Center
https://en.wikipedia.org/wiki/65802
https://en.wikipedia.org/wiki/65C816
https://en.wikipedia.org/wiki/Z80
https://en.wikipedia.org/wiki/Z180
https://en.wikipedia.org/wiki/EZ80
https://en.wikipedia.org/wiki/Altera
https://en.wikipedia.org/wiki/Nios_II
https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/Z/Architecture
https://en.wikipedia.org/wiki/Freescale_ColdFire
https://en.wikipedia.org/wiki/Motorola_68000_series
https://en.wikipedia.org/wiki/Microblaze
https://en.wikipedia.org/wiki/SuperH
https://en.wikipedia.org/wiki/AVR32
https://en.wikipedia.org/wiki/File_Allocation_Table
https://en.wikipedia.org/wiki/ARM_architecture
https://en.wikipedia.org/wiki/PowerPC
https://en.wikipedia.org/wiki/DEC_Alpha
https://en.wikipedia.org/wiki/SPARC
https://en.wikipedia.org/wiki/MIPS_architecture
https://en.wikipedia.org/wiki/PA-RISC
https://en.wikipedia.org/wiki/SuperH
https://en.wikipedia.org/wiki/IA-64

the capability of the machine to compute or pass data in either endian format.

Many of these architectures can be switched via software to default to a specific endian format (usually done when the computer
starts up); however, on some systems the default endianness is selected by hardware on the motherboard and cannot be changed via
software (e.g. the Alpha, which runs only in big-endian mode on the Cray T3E).

Note that the term "bi-endian" refers primarily to how a processor treats data accesses. Instruction accesses (fetches of instruction
words) on a given processor may still assume a fixed endianness, even if data accesses are fully bi-endian, though this is not always
the case, such as on Intel's IA-64-based Itanium CPU, which allows both.

Note, too, that some nominally bi-endian CPUs require motherboard help to fully switch endianness. For instance, the 32-bit desktop-
oriented PowerPC processors in little-endian mode act as little-endian from the point of view of the executing programs, but they
require the motherboard to perform a 64-bit swap across all 8 byte lanes to ensure that the little-endian view of things will apply to
I/O devices. In the absence of this unusual motherboard hardware, device driver software must write to different addresses to undo
the incomplete transformation and also must perform a normal byte swap.

Some CPUs, such as many PowerPC processors intended for embedded use and almost all SPARC processors, allow per-page choice
of endianness.

SPARC processors since the late 1990s ("SPARC v9" compliant processors) allow data endianness to be chosen with each individual
instruction that loads from or stores to memory.

Many processors have instructions to convert a word in a register to the opposite endianness, that is, they swap the order of the bytes
in a 16-, 32- or 64-bit word. All the individual bits are not reversed though.

Recent Intel x86 and x86-64 architecture CPUs have a MOVBE instruction (Intel Core since generation 4, after Atom),[15] which
fetches a big-endian format word from memory or writes a word into memory in big-endian format. These processors are otherwise
thoroughly little-endian. They also already had a range of swap instructions to reverse the byte order of the contents of registers, such
as when words have already been fetched from memory locations where they were in the 'wrong' endianness.

ZFS/OpenZFS combined file system and logical volume manager is known to provide adaptive endianness and to work with both
big-endian and little-endian systems.[16]

Although the ubiquitous x86 processors of today use little-endian storage for all types of data (integer, floating point, BCD), there are
a number of hardware architectures where floating-point numbers are represented in big-endian form while integers are represented in
little-endian form.[17] There are ARM processors that have half little-endian, half big-endian floating-point representation for double-
precision numbers: both 32-bit words are stored in little-endian like integer registers, but the most significant one first. Because there
have been many floating-point formats with no "network" standard representation for them, the XDR standard uses big-endian IEEE
754 as its representation. It may therefore appear strange that the widespread IEEE 754 floating-point standard does not specify
endianness.[18] Theoretically, this means that even standard IEEE floating-point data written by one machine might not be readable
by another. However, on modern standard computers (i.e., implementing IEEE 754), one may in practice safely assume that the
endianness is the same for floating-point numbers as for integers, making the conversion straightforward regardless of data type.
(Small embedded systems using special floating-point formats may be another matter however.)

The little-endian system has the property that the same value can be read from memory at different lengths without using different
addresses (even when alignment restrictions are imposed). For example, a 32-bit memory location with content 4A 00 00 00 can be
read at the same address as either 8-bit (value = 4A), 16-bit (004A), 24-bit (00004A), or 32-bit (0000004A), all of which retain the

Floating point

Optimization

https://en.wikipedia.org/wiki/Cray_T3E
https://en.wikipedia.org/wiki/IA-64
https://en.wikipedia.org/wiki/PowerPC
https://en.wikipedia.org/wiki/Input/Output
https://en.wikipedia.org/wiki/Intel_Core
https://en.wikipedia.org/wiki/Intel_Atom
https://en.wikipedia.org/wiki/ZFS
https://en.wikipedia.org/wiki/OpenZFS
https://en.wikipedia.org/wiki/File_system
https://en.wikipedia.org/wiki/Logical_volume_management
https://en.wikipedia.org/wiki/Binary_coded_decimal
https://en.wikipedia.org/wiki/Floating-point
https://en.wikipedia.org/wiki/ARM_architecture
https://en.wikipedia.org/wiki/Computer_network
https://en.wikipedia.org/wiki/External_Data_Representation
https://en.wikipedia.org/wiki/IEEE_754
https://en.wikipedia.org/wiki/Embedded_system
https://en.wikipedia.org/wiki/Byte_alignment
https://en.wikipedia.org/wiki/8-bit
https://en.wikipedia.org/wiki/16-bit
https://en.wikipedia.org/wiki/24-bit
https://en.wikipedia.org/wiki/32-bit

Big-Endian Little-Endian
C-type name initial value memory at offset memory at offset

of variable +0 +1 +2 +3 +0 +1 +2 +3

int32_t longVar = 0x0a0b0c0d; 0Ah 0Bh 0Ch 0Dh 0Dh 0Ch 0Bh 0Ah

int16_t shortVar = 0x0c0d; 0Ch 0Dh 0Dh 0Ch

A simple way to remember is "In Little Endian, the Least significant byte goes into the Lowest-addressed
slot".

So in the example in the table, 0Dh, the least significant byte, in a Little-Endian system goes into slot +0.

same numeric value. Although this little-endian property is rarely used directly by high-level programmers, it is often employed by
code optimizers as well as by assembly language programmers.

On the other hand, in some situations it may be useful to obtain an approximation of a multi-byte or multi-word value by reading only
its most significant portion instead of the complete representation; a big-endian processor may read such an approximation using the
same base-address that would be used for the full value.

Little-endian representation simplifies hardware in processors that add multi-byte integral values a byte at a time, such as small-scale
byte-addressable processors and microcontrollers. As carry propagation must start at the least significant bit (and thus byte), multi-
byte addition can then be carried out with a monotonically-incrementing address sequence, a simple operation already present in
hardware. On a big-endian processor, its addressing unit has to be told how big the addition is going to be so that it can hop forward
to the least significant byte, then count back down towards the most significant byte (MSB). On the other hand, arithmetic division is
done starting from the MSB, so it is more natural for big-endian processors. However, high-performance processors usually fetch
typical multi-byte operands from memory in the same amount of time they would have fetched a single byte, so the complexity of the
hardware is not affected by the byte ordering.

We can assume that as we write text left to right, we are increasing the 'address' on paper, as a processor would write bytes with
increasing memory addresses − as in the adjacent table. On paper, the hex value 0a0b0c0d (written 168496141 in usual decimal
notation) is big-endian style since we write the most significant digit first and the rest follow in decreasing significance. Mapping this
number as a binary value to a sequence of 4 bytes in memory in big-endian style also writes the bytes from left to right in decreasing
significance: 0Ah at +0, 0Bh at +1, 0Ch at +2, 0Dh at +3.

On a little-endian system, the bytes are written from left to right in increasing significance, starting with the one's byte: 0Dh at +0,

0Ch at +1, 0Bh at +2, 0Ah at +3. Writing a 32-bit binary value to a memory location on a little-endian system and outputting the

memory location (with growing addresses from left to right) shows that the order is reversed (byte-swapped) compared to usual big-
endian notation. This is the way a hexdump is displayed: because the dumping program is unable to know what kind of data it is
dumping, the only orientation it can observe is monotonically increasing addresses. The human reader, however, who knows that he
or she is reading a hexdump of a little-endian system and who knows what kind of data he or she is reading, reads the byte sequence
0Dh,0Ch,0Bh,0Ah as the 32-bit binary value 168496141, or 0x0a0b0c0d in hexadecimal notation. (Of course, this is not the same as

the number 0D0C0B0Ah = 0x0d0c0b0a = 218893066.)

This section provides example layouts of the 32-bit number 0A0B0C0Dh in the most common variants of endianness. There exist
several digital processors that use other formats. That is true for typical embedded systems as well as for general computer CPUs.
Most processors used in non CPU roles in typical computers (in storage units, peripherals etc.) also use one of these two basic

Calculation order

Mapping multi-byte binary values to memory

Examples

https://en.wikipedia.org/wiki/Assembly_language
https://en.wikipedia.org/wiki/Microcontroller
https://en.wikipedia.org/wiki/Hexdump
https://en.wikipedia.org/wiki/Embedded_system

formats, although not always 32-bit.

The examples refer to the storage in memory of the value. It uses hexadecimal notation.

address increment 1-byte (octet)

increasing addresses →

… 0Ah 0Bh 0Ch 0Dh …

The most significant byte (MSB) value, 0Ah, is at the lowest address. The

other bytes follow in decreasing order of significance. This is akin to left-to-
right reading in hexadecimal order.

increasing addresses →

… 0A0Bh 0C0Dh …

The most significant atomic element stores now the value 0A0Bh, followed by 0C0Dh.

address increment 1-byte (octet)

increasing addresses →

… 0Dh 0Ch 0Bh 0Ah …

The least significant byte (LSB) value, 0Dh, is at the lowest address. The

other bytes follow in increasing order of significance. This is akin to right-to-
left reading in hexadecimal order.

increasing addresses →

… 0C0Dh 0A0Bh …

The least significant 16-bit unit stores the value 0C0Dh, immediately followed by 0A0Bh. Note that 0C0Dh and 0A0Bh represent

integers, not bit layouts.

Byte addresses increasing from right to left

Big-endian

Atomic element size 8-bit

Atomic element size 16-bit

Little-endian

Atomic element size 8-bit

Atomic element size 16-bit

When organized by byte addresses

https://en.wikipedia.org/wiki/Hexadecimal
https://en.wikipedia.org/wiki/Most_significant_byte
https://en.wikipedia.org/wiki/Least_significant_byte
https://en.wikipedia.org/wiki/File:Big-Endian.svg
https://en.wikipedia.org/wiki/File:Little-Endian.svg

Visualising memory addresses from left to right makes little-endian values appear backwards. If the addresses are written increasing
towards the left instead, each individual little-endian value will appear forwards. However strings of values or characters appear
reversed instead.

With 8-bit atomic elements:

← increasing addresses

… 0Ah 0Bh 0Ch 0Dh …

The least significant byte (LSB) value, 0Dh, is at the lowest address. The other bytes follow in increasing order of significance.

With 16-bit atomic elements:

← increasing addresses

… 0A0Bh 0C0Dh …

The least significant 16-bit unit stores the value 0C0Dh, immediately followed by 0A0Bh.

The display of text is reversed from the normal display of languages such as English that read from left to right. For example, the
word "XRAY" displayed in this manner, with each character stored in an 8-bit atomic element:

← increasing addresses

… "Y" "A" "R" "X" …

If pairs of characters are stored in 16-bit atomic elements (using 8 bits per character), it could look even stranger:

← increasing addresses

… "AY" "XR" …

This conflict between the memory arrangements of binary data and text is intrinsic to the nature of the little-endian convention, but is
a conflict only for languages written left-to-right, such as English. For right-to-left languages such as Arabic and Hebrew, there is no
conflict of text with binary, and the preferred display in both cases would be with addresses increasing to the left. (On the other hand,
right-to-left languages have a complementary intrinsic conflict in the big-endian system.)

Numerous other orderings, generically called middle-endian or mixed-endian, are possible. On the PDP-11 (16-bit little-endian), for
example, the instructions to convert between floating-point and integer values in the optional floating-point processor on the PDP-
11/45[19] and PDP-11/70, and in some later processors, stored 32-bit "double precision integer long" values with the 16-bit halves
swapped from the expected little-endian order, and the UNIX C compiler used the same format for 32-bit long integers. This ordering
is known as PDP-endian.

storage of a 32-bit word (hexadecimal 0A0B0C0D) on a PDP-11

increasing addresses →

… 0Bh 0Ah 0Dh 0Ch …

The ARM architecture can also produce this format when writing a 32-bit word to an address 2 bytes from a 32-bit word alignment.

Segment descriptors on Intel 80386 and compatible processors keep a 32-bit base address of the segment stored in little-endian order,
but in four nonconsecutive bytes, at relative positions 2, 3, 4 and 7 of the descriptor start.

An example of middle-endianness is the American date format.

Middle-endian

https://en.wikipedia.org/wiki/Least_significant_byte
https://en.wikipedia.org/wiki/Arabic
https://en.wikipedia.org/wiki/Hebrew
https://en.wikipedia.org/wiki/PDP-11
https://en.wikipedia.org/wiki/UNIX
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/ARM_architecture
https://en.wikipedia.org/wiki/Data_structure_alignment
https://en.wikipedia.org/wiki/Segment_descriptors
https://en.wikipedia.org/wiki/Intel_80386
https://en.wikipedia.org/wiki/Date_and_time_notation_in_the_United_States#Date

Endianness is a problem when a binary file created on a computer is read on another computer with different endianness. Some CPU
instruction sets provide native support for endian byte swapping, such as bswap[20] (x86 - 486 and later), and rev[21] (ARMv6 and
later).

Some compilers have built-in facilities to deal with data written in other formats. For example, the Intel Fortran compiler supports the
non-standard CONVERT specifier, so a file can be opened as

OPEN(unit,CONVERT='BIG_ENDIAN',...)

or

OPEN(unit,CONVERT='LITTLE_ENDIAN',...)

Some compilers have options to generate code that globally enables the conversion for all file IO operations. This allows
programmers to reuse code on a system with the opposite endianness without having to modify the code itself. If the compiler does
not support such conversion, the programmer needs to swap the bytes via ad hoc code.

Fortran sequential unformatted files created with one endianness usually cannot be read on a system using the other endianness
because Fortran usually implements a record (defined as the data written by a single Fortran statement) as data preceded and
succeeded by count fields, which are integers equal to the number of bytes in the data. An attempt to read such file on a system of the
other endianness then results in a run-time error, because the count fields are incorrect. This problem can be avoided by writing out
sequential binary files as opposed to sequential unformatted.

Unicode text can optionally start with a byte order mark (BOM) to signal the endianness of the file or stream. Its code point is
U+FEFF. In UTF-32 for example, a big-endian file should start with 00 00 FE FF; a little-endian should start with FF FE 00

00.

Application binary data formats, such as for example MATLAB .mat files, or the .BIL data format, used in topography, are usually
endianness-independent. This is achieved by:

1. storing the data always in one fixed endianness, or
2. carrying with the data a switch to indicate which endianness the data was written with.

When reading the file, the application converts the endianness, invisibly from the user. An example of the first case is the binary XLS
file format that is portable between Windows and Mac systems and always little endian, leaving the Mac application to swap the
bytes on load and save when running on a big-endian Motorola 68K or PowerPC processor.[22]

TIFF image files are an example of the second strategy, whose header instructs the application about endianness of their internal
binary integers. If a file starts with the signature "MM" it means that integers are represented as big-endian, while "II" means little-

endian. Those signatures need a single 16-bit word each, and they are palindromes (that is, they read the same forwards and
backwards), so they are endianness independent. "I" stands for Intel and "M" stands for Motorola, the respective CPU providers of

the IBM PC compatibles (Intel) and Apple Macintosh platforms (Motorola) in the 1980s. Intel CPUs are little-endian, while Motorola
680x0 CPUs are big-endian. This explicit signature allows a TIFF reader program to swap bytes if necessary when a given file was
generated by a TIFF writer program running on a computer with a different endianness.

Since the required byte swap depends on the size of the numbers stored in the file (two 2-byte integers require a different swap than
one 4-byte integer), the file format must be known to perform endianness conversion.

/* C function to change endianness for byte swap in an unsigned 32-bit integer */

uint32_t ChangeEndianness (uint32_t value)
{
 uint32_t result = 0;
 result |= (value & 0x000000FF) << 24;
 result |= (value & 0x0000FF00) << 8;

Files and byte swap

https://en.wikipedia.org/wiki/CPU
https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/Intel_80486
https://en.wikipedia.org/wiki/ARM_architecture
https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/Intel
https://en.wikipedia.org/wiki/Fortran
https://en.wikipedia.org/wiki/Storage_record
https://en.wikipedia.org/wiki/Unicode
https://en.wikipedia.org/wiki/Byte_order_mark
https://en.wikipedia.org/wiki/UTF-32
https://en.wikipedia.org/wiki/MATLAB
https://en.wikipedia.org/wiki/XLS_file
https://en.wikipedia.org/wiki/TIFF
https://en.wikipedia.org/wiki/Palindrome
https://en.wikipedia.org/wiki/Intel
https://en.wikipedia.org/wiki/Motorola
https://en.wikipedia.org/wiki/CPU
https://en.wikipedia.org/wiki/IBM_PC
https://en.wikipedia.org/wiki/Apple_Macintosh

 result |= (value & 0x00FF0000) >> 8;
 result |= (value & 0xFF000000) >> 24;
 return result;
}

Many IETF RFCs use the term network order, meaning the order of transmission for bits and bytes over the wire in network
protocols. Among others, the historic RFC 1700 (also known as Internet standard STD 2) has defined the network order for protocols
in the Internet protocol suite to be big-endian, hence the use of the term "network byte order" for big-endian byte order; however, not
all protocols use big-endian byte order as the network order.[23]

The Berkeley sockets API defines a set of functions to convert 16-bit and 32-bit integers to and from network byte order: the htons

(host-to-network-short) and htonl (host-to-network-long) functions convert 16-bit and 32-bit values respectively from machine

(host) to network order; the ntohs and ntohl functions convert from network to host order. These functions may be a no-op on a

big-endian system.

In CANopen, multi-byte parameters are always sent least significant byte first (little endian). The same is true for Ethernet
Powerlink.[24]

While the high-level network protocols usually consider the byte (mostly meant as octet) as their atomic unit, the lowest network
protocols may deal with ordering of bits within a byte.

Bit numbering is a concept similar to endianness, but on a level of bits, not bytes. Bit endianness or bit-level endianness refers to the
transmission order of bits over a serial medium. The bit-level analogue of little-endian (least significant bit goes first) is used in RS-
232, Ethernet, and USB. Some protocols use the opposite ordering (e.g. Teletext, I²C, SMBus, PMBus, and SONET and SDH[25]).
Usually, there exists a consistent view to the bits irrespective of their order in the byte, such that the latter becomes relevant only on a
very low level. One exception is caused by the feature of some cyclic redundancy checks to detect all burst errors up to a known
length, which would be spoiled if the bit order is different from the byte order on serial transmission.

Apart from serialization, the terms bit endianness and bit-level endianness are seldom used, as computer architectures where each
individual bit has a unique address are rare. Individual bits or bit fields are accessed via their numerical value or, in high-level
programming languages, assigned names, the effects of which, however, may be machine dependent or lack software portability. The
natural numbering is that the arithmetic left shift 1<<n yields a mask for the bit of position n, a rule which exhibits the machine's
(byte) endianness at least if n ≥ 8, e.g. if used for indexing a sufficiently large bit array. Other numberings do occur in various
documentations.

1. Danny Cohen (1980-04-01). On Holy Wars and a Plea for Peace (http://www.ietf.org/rfc/ien/ien137.txt). IETF. IEN
137. http://www.ietf.org/rfc/ien/ien137.txt. "…which bit should travel first, the bit from the little end of the word, or the
bit from the big end of the word? The followers of the former approach are called the Little-Endians, and the
followers of the latter are called the Big-Endians." Also published at IEEE Computer, October 1981 issue (http://ieee
xplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1667115).

2. "Internet Hall of Fame Pioneer" (http://internethalloffame.org/inductees/danny-cohen). Internet Hall of Fame. The
Internet Society.

3. Jonathan Swift (1726). Gulliver's Travels (http://en.wikisource.org/wiki/Gulliver%27s_Travels/Part_I/Chapter_IV).

4. David Cary. "Endian FAQ" (http://david.carybros.com/html/endian_faq.html). Retrieved 2010-10-11.

Networking

Bit endianness

References

https://en.wikipedia.org/wiki/IETF_RFC
https://en.wikipedia.org/wiki/Network_protocols
https://tools.ietf.org/html/rfc1700
https://en.wikipedia.org/wiki/Internet_standard
https://en.wikipedia.org/wiki/Internet_protocol_suite
https://en.wikipedia.org/wiki/Berkeley_sockets
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/No-op
https://en.wikipedia.org/wiki/CANopen
https://en.wikipedia.org/wiki/Least_significant_byte
https://en.wikipedia.org/wiki/Ethernet_Powerlink
https://en.wikipedia.org/wiki/Octet_(computing)
https://en.wikipedia.org/wiki/Bit_numbering
https://en.wikipedia.org/wiki/RS-232
https://en.wikipedia.org/wiki/Ethernet
https://en.wikipedia.org/wiki/USB
https://en.wikipedia.org/wiki/Teletext
https://en.wikipedia.org/wiki/I%C2%B2C
https://en.wikipedia.org/wiki/SMBus
https://en.wikipedia.org/wiki/PMBus
https://en.wikipedia.org/wiki/Synchronous_optical_networking
https://en.wikipedia.org/wiki/Cyclic_redundancy_check
https://en.wikipedia.org/wiki/Burst_error
https://en.wikipedia.org/wiki/Bit_field
https://en.wikipedia.org/wiki/Software_portability
https://en.wikipedia.org/wiki/Arithmetic_left_shift
https://en.wikipedia.org/wiki/Danny_Cohen_(engineer)
http://www.ietf.org/rfc/ien/ien137.txt
https://en.wikipedia.org/wiki/Internet_Engineering_Task_Force
http://www.ietf.org/rfc/ien/ien137.txt
https://en.wikipedia.org/wiki/IEEE_Computer
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1667115
http://internethalloffame.org/inductees/danny-cohen
http://en.wikisource.org/wiki/Gulliver%27s_Travels/Part_I/Chapter_IV
http://david.carybros.com/html/endian_faq.html

5. When character (text) strings are compared with one another, this is done lexicographically where a single positional
element (character) also has a positional value. Lexicographical comparison means almost everywhere: first
character ranks highest — as in the telephone book. This would have the consequence that almost every machine
would be big-endian or at least mixed-endian. Therefore, for the criterion below to apply, the data type in question
has to be numeric.

6. Andrew S. Tanenbaum; Todd M. Austin (4 August 2012). Structured Computer Organization (https://books.google.co
m/books?id=m0HHygAACAAJ). Prentice Hall PTR. ISBN 978-0-13-291652-3. Retrieved 18 May 2013.

7. Note that, in these expressions, the term "end" is meant as "extremity", not as "last part"; and that (the extremity
with) big resp. little significance is written first.

8. "NUXI problem" (http://catb.org/jargon/html/N/NUXI-problem.html). The Jargon File. Retrieved 2008-12-20.

9. Jalics, Paul J.; Heines, Thomas S. (1 December 1983). "Transporting a portable operating system: UNIX to an IBM
minicomputer". Communications of the ACM. 26 (12): 1066–1072. doi:10.1145/358476.358504 (https://doi.org/10.11
45%2F358476.358504).

10. House, David; Faggin, Federico; Feeney, Hal; Gelbach, Ed; Hoff, Ted; Mazor, Stan; Smith, Hank (2006-09-21). "Oral
History Panel on the Development and Promotion of the Intel 8008 Microprocessor" (http://archive.computerhistory.o
rg/resources/text/Oral_History/Intel_8008/Intel_8008_1.oral_history.2006.102657982.pdf#page=5) (PDF). Computer
History Museum. p. 5. Retrieved 23 April 2014. "Mazor: And lastly, the original design for Datapoint... what they
wanted was a [bit] serial machine. And if you think about a serial machine, you have to process all the addresses
and data one-bit at a time, and the rational way to do that is: low-bit to high-bit because that’s the way that carry
would propagate. So it means that [in] the jump instruction itself, the way the 14-bit address would be put in a serial
machine is bit-backwards, as you look at it, because that’s the way you’d want to process it. Well, we were gonna
built a byte-parallel machine, not bit-serial and our compromise (in the spirit of the customer and just for him), we put
the bytes in backwards. We put the low-byte [first] and then the high-byte. This has since been dubbed “Little
Endian” format and it’s sort of contrary to what you’d think would be natural. Well, we did it for Datapoint. As you’ll
see, they never did use the [8008] chip and so it was in some sense “a mistake”, but that [Little Endian format] has
lived on to the 8080 and 8086 and [is] one of the marks of this family."

11. Ken Lunde (13 January 2009). CJKV Information Processing (https://books.google.com/books?id=SA92uQqTB-AC&
pg=PA29). O'Reilly Media, Inc. p. 29. ISBN 978-0-596-51447-1. Retrieved 21 May 2013.

12. Küveler, Gerd; Schwoch, Dietrich (2013) [1996]. Arbeitsbuch Informatik - eine praxisorientierte Einführung in die
Datenverarbeitung mit Projektaufgabe (https://books.google.com/books?id=b8-dBgAAQBAJ) (in German). Vieweg-
Verlag, reprint: Springer-Verlag. doi:10.1007/978-3-322-92907-5 (https://doi.org/10.1007%2F978-3-322-92907-5).
ISBN 978-3-528-04952-2. 9783322929075. Retrieved 2015-08-05.

13. Küveler, Gerd; Schwoch, Dietrich (2007-10-04). Informatik für Ingenieure und Naturwissenschaftler: PC- und
Mikrocomputertechnik, Rechnernetze (https://books.google.com/books?id=xQbvPYxceY0C) (in German). 2 (5 ed.).
Vieweg, reprint: Springer-Verlag. ISBN 3834891916. 9783834891914. Retrieved 2015-08-05.

14. "Cx51 User's Guide: E. Byte Ordering" (http://www.keil.com/support/man/docs/c51/c51_xe.htm). keil.com.

15. "How to detect New Instruction support in the 4th generation Intel® Core™ processor family" (https://software.intel.c
om/sites/default/files/article/405250/how-to-detect-new-instruction-support-in-the-4th-generation-intel-core-processor
-family.pdf) (PDF). Retrieved 2 May 2017.

16. Matt Ahrens (2016). "FreeBSD Kernel Internals: An Intensive Code Walkthrough" (http://open-zfs.org/wiki/Document
ation/Read_Write_Lecture). OpenZFS Documentation/Read Write Lecture.

17. "Floating point formats" (http://www.quadibloc.com/comp/cp0201.htm).

18. "pack – convert a list into a binary representation" (http://www.perl.com/doc/manual/html/pod/perlfunc/pack.html).

19. PDP-11/45 Processor Handbook (http://bitsavers.org/pdf/dec/pdp11/handbooks/PDP1145_Handbook_1973.pdf)
(PDF). Digital Equipment Corporation. 1973. p. 165.

20. "Intel 64 and IA-32 Architectures Software Developer's Manual Volume 2 (2A, 2B & 2C): Instruction Set Reference,
A-Z" (http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-devel
oper-instruction-set-reference-manual-325383.pdf) (PDF). Intel. September 2016. p. 3–112. Retrieved 2017-02-05.

21. "ARMv8-A Reference Manual" (http://infocenter.arm.com/help/topic/com.arm.doc.ddi0487a.k_10775/index.html).
ARM Holdings.

22. "Microsoft Office Excel 97 - 2007 Binary File Format Specification (*.xls 97-2007 format)" (http://download.microsoft.
com/download/0/B/E/0BE8BDD7-E5E8-422A-ABFD-4342ED7AD886/Excel97-2007BinaryFileFormat(xls)Specificatio
n.xps). Microsoft Corporation. 2007.

https://en.wikipedia.org/wiki/Lexicographical_order
https://books.google.com/books?id=m0HHygAACAAJ
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-0-13-291652-3
http://catb.org/jargon/html/N/NUXI-problem.html
https://en.wikipedia.org/wiki/Jargon_File
https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1145%2F358476.358504
http://archive.computerhistory.org/resources/text/Oral_History/Intel_8008/Intel_8008_1.oral_history.2006.102657982.pdf#page=5
https://en.wikipedia.org/wiki/Computer_History_Museum
https://books.google.com/books?id=SA92uQqTB-AC&pg=PA29
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-0-596-51447-1
https://books.google.com/books?id=b8-dBgAAQBAJ
https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1007%2F978-3-322-92907-5
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-3-528-04952-2
https://books.google.com/books?id=xQbvPYxceY0C
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/3834891916
http://www.keil.com/support/man/docs/c51/c51_xe.htm
https://software.intel.com/sites/default/files/article/405250/how-to-detect-new-instruction-support-in-the-4th-generation-intel-core-processor-family.pdf
http://open-zfs.org/wiki/Documentation/Read_Write_Lecture
http://www.quadibloc.com/comp/cp0201.htm
http://www.perl.com/doc/manual/html/pod/perlfunc/pack.html
http://bitsavers.org/pdf/dec/pdp11/handbooks/PDP1145_Handbook_1973.pdf
https://en.wikipedia.org/wiki/Digital_Equipment_Corporation
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0487a.k_10775/index.html
https://en.wikipedia.org/wiki/ARM_Holdings
http://download.microsoft.com/download/0/B/E/0BE8BDD7-E5E8-422A-ABFD-4342ED7AD886/Excel97-2007BinaryFileFormat(xls)Specification.xps

Danny Cohen (1980-04-01). On Holy Wars and a Plea for Peace. IETF. IEN 137.
http://www.ietf.org/rfc/ien/ien137.txt. Also published at IEEE Computer, October 1981 issue.

David V. James (June 1990). "Multiplexed buses: the endian wars continue". IEEE Micro. 10 (3): 9–21.
doi:10.1109/40.56322. ISSN 0272-1732. Retrieved 2008-12-20.
Bertrand Blanc, Bob Maaraoui (December 2005). "Endianness or Where is Byte 0?" (PDF). Retrieved 2008-12-21.

Understanding big and little endian byte order
Byte Ordering PPC
Writing endian-independent code in C

This article is based on material taken from the Free On-line Dictionary of Computing prior to 1 November 2008 and incorporated under the "relicensing"

terms of the GFDL, version 1.3 or later.

Retrieved from "https://en.wikipedia.org/w/index.php?title=Endianness&oldid=816857516"

This page was last edited on 24 December 2017, at 05:25.

Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using this
site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia
Foundation, Inc., a non-profit organization.

23. Reynolds, J.; Postel, J. (October 1994). "Data Notations" (https://tools.ietf.org/html/rfc1700#page-3). Assigned
Numbers (https://tools.ietf.org/html/rfc1700). IETF. p. 3. STD 2. RFC 1700. https://tools.ietf.org/html/rfc1700#page-3.
Retrieved 2012-03-02.

24. Ethernet POWERLINK Standardisation Group (2012), EPSG Working Draft Proposal 301: Ethernet POWERLINK
Communication Profile Specification Version 1.1.4, chapter 6.1.1.

25. Cf. Sec. 2.1 Bit Transmission of draft-ietf-pppext-sonet-as-00 "Applicability Statement for PPP over SONET/SDH" (ht
tp://tools.ietf.org/html/draft-ietf-pppext-sonet-as-00)

Further reading

External links

https://en.wikipedia.org/wiki/Danny_Cohen_(engineer)
http://www.ietf.org/rfc/ien/ien137.txt
https://en.wikipedia.org/wiki/Internet_Engineering_Task_Force
http://www.ietf.org/rfc/ien/ien137.txt
https://en.wikipedia.org/wiki/IEEE_Computer
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1667115
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=56322
https://en.wikipedia.org/wiki/IEEE_Micro
https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.1109%2F40.56322
https://en.wikipedia.org/wiki/International_Standard_Serial_Number
https://www.worldcat.org/issn/0272-1732
http://3bc.bertrand-blanc.com/endianness05.pdf
http://betterexplained.com/articles/understanding-big-and-little-endian-byte-order/
https://developer.apple.com/documentation/CoreFoundation/Conceptual/CFMemoryMgmt/Concepts/ByteOrdering.html
http://www.ibm.com/developerworks/aix/library/au-endianc/index.html?ca=drs-
https://en.wikipedia.org/wiki/Free_On-line_Dictionary_of_Computing
https://en.wikipedia.org/wiki/GNU_Free_Documentation_License
https://en.wikipedia.org/w/index.php?title=Endianness&oldid=816857516
https://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License
https://wikimediafoundation.org/wiki/Terms_of_Use
https://wikimediafoundation.org/wiki/Privacy_policy
https://www.wikimediafoundation.org/
https://en.wikipedia.org/wiki/Joyce_K._Reynolds
https://en.wikipedia.org/wiki/Jon_Postel
https://tools.ietf.org/html/rfc1700#page-3
https://tools.ietf.org/html/rfc1700
https://en.wikipedia.org/wiki/Internet_Engineering_Task_Force
https://tools.ietf.org/html/rfc1700#page-3
http://tools.ietf.org/html/draft-ietf-pppext-sonet-as-00

