二、模型思想
模型思想是此次修订标准新增的核心概念。尽管原标准在课程实施部分的“教学建议”中曾提到了“建立模型”一词,但数学模型、建模等概念并未出现在义务教育阶段课程目标及内容标准的文字表述之中。这次随着“模型思想”的列入,我们会看到关于数学模型的相关提法会在《标准》的多个部分出现。特别的,模型思想作为一种基本的数学思想更是会与目标、内容紧密关联。作为第一线教师应对《标准》中模型思想的含义及要求准确理解,并把这要求落实于课堂教学之中。
《标准》中模型思想的含义及要求
1.模型思想是一种数学的基本思想
在原课标中,“模型”一词出现在第三学段的教学建议之中,其提法是“教学应结合具体的数学内容采用‘问题情境——建立模型——解释、应用与拓展’的模式展开,让学生经历知识的形成与应用的过程,从而更好理解数学知识的意义……”。显然,在这里数学建模及其过程更多地被看成是一种教学活动过程和模式,强调的是其教学上的意义。修订后的《标准》将数学基本思想作为“四基”之一提出,必然引出这样的问题:数学基本思想主要指哪些思想呢?现在模型思想作为10个核心概念中唯一一个以“思想”指称的概念,这实际上已经明示它是数学基本思想之一。
2.关于建立和求解模型的过程要求
前面我们已介绍了数学建模的一般步骤。《标准》以义务教育数学课程的实际情况出发,将这一过程进一步简化为这样三个环节:首先是“从现实生活或具体情境中抽象数学问题”。这说明发现和提出问题是数学建模的起点。然后“用数学符号建立方程、不等式、函数等表示数学问题中的数量关系和变化规律”。在这一步中,学生要通过观察、分析、抽象、概括、选择、判断等等数学活动,完成模式抽象,得到模型。这是建模最重要的一个环节。最后,通过模型去求出结果,并用此结果去解释、讨论它在现实问题中的意义。显然,数学建模过程可以使学生在多方面得到培养而不只是知识、技能,更有思想、方法,也有经验积累,其情感态度(如兴趣、自信心、科学态度等)也会得到培养。
3.模型思想体现在《标准》的许多方面
正因为模型思想从本质意义上体现着数学的基本思想,所以它渗透于《标准》的许多方面。比如,《标准》中有如下提法:“经历数与代数的抽象、运算与建模过程”(数与代数总目标);“通过用代数式、方程、不等式、函数等表述数量关系的过程,体会模型思想”,“体会方程是刻画现实世界数量关系的有效模型”(三学段目标);“结合实际情境,经历设计解决具体问题的方案,并加以实施的过程,体验建立模型、解决问题的过程”(“综合与实践”内容标准)等等,除此之外,在教学实施、教材编写、评价、案例等部分都有关于模型思想的具体要求,在课程实施中要注意这一特点。
模型思想的培养
1.模型思想需要教师在教学中逐步渗透和引导学生不断感悟
2.使学生经历“问题情境——建立模型——求解验证”的数学活动过程
3.通过数学建模改善学习方式
A.指利用图形描述和分析问题
B.借助几何直观可以把复杂的数学问题变得简明、形象
C.有助于探索解决问题的思路,预测结果
D.几何直观可以帮助学生直观地理解数学,在整个数学学习过程中都发挥着重要作用