当前位置:课程学习>>第二章>>知识讲解>>知识归纳


插值法是一个古老而实用的数值方法。它不仅是数值微分、数值积分、函数逼近以及微分方程数值解等数值分析的基础,而且在许多实际问题中,也有直接的应用。

本节只简要介绍了有关插值法的一些基本概念、多项式插值的基础理论和几个常用的插值方法,例如拉格朗日插值公式、牛顿基本插值公式和仅适用于等距节点下的牛顿向前(后)插值公式,以及应用最广且有二阶连续导数的三次样条插值。作为一种直接应用,也介绍了利用插值法求导数的基本原理和常用公式。

实际上,插值法的内容,包括插值函数类的选择,公式的构造与应用,误差的估计,以及收敛性、稳定性的讨论等,都是十分丰富的。因限于学时,本书未作更深入的讨论。

进入你问我答