芝诺悖论今昔谈
爱利亚的芝诺为了捍 卫他 老师巴门尼德关于 “ 存在 ” 不动、是一的学说,提出了著名的运动悖论和多悖论,以表明运动和多是不可能的。他的结论在常人看来当然很荒谬,但他居然给出了乍看起来颇令人信服的论证,故人们常常称这些论证构成了悖论或佯谬。不过,若细细推敲,其结论未必荒谬,其论证未必令人信服,故中性的称这些论证为芝诺论辨( Argument )最为合适。
一、历史追溯
芝诺的运动论辨全部得自亚里士多德在《物理学》中的转述,有四个:
1 、二分法。
2 、阿基里斯快跑者永远赶不上慢跑者。
3 、飞矢不动。
4 、运动场。
四个论辨可分成两组,前两个假定时空是连续的,后两个假定时空是分立的,每组的第一个论证绝对运动不可能,第二个论证相对运动不可能。
关于多的论辨得自辛普里丘在《〈物理学〉注释》的转述,大意是:如果事物是多,那么大会大到无限大,小会小到零,因为任何数量都可以无限分割,若分割的结果等于零,则总和是零,若分割结果不是零,则无限总和是无限大。
以上转述从哲学史角度看都过于粗疏,不过对于讨论其哲学含义则差不多够了。
19 、 20 世纪之交的绝对唯心主义者象布拉德雷(Bradley,F.H)全盘接受芝诺的论证和结论。他视运动、时间空间为幻象,芝诺论辩正好符合他的主张,当然全盘接受。在《现象与实在》中他写道: “ 时间与空间一样,已被最明显不过的证明为不是实在,而是一个矛盾的假象。 ” 除布拉德雷之外,哲学史上大部分哲学家认为芝诺的结论是荒谬的,其论证有问题。不过,在不断检查其论证毛病的过程中,人们反倒发现了芝诺论辨的深刻之处。常常是人们自以为解决了芝诺悖论,不多久就又发现其实并没有解决。
已知最早的批评来自亚里士多德。关于二分法,他说,虽然不可能在有限的时间越过无限的点,但若把时间在结构上看成与空间完全一样,也可以无限分割,那么在无限的时间点中越过无限的空间点是可能的;关于阿喀琉斯,他说,如慢者永远领先当然无法追上,但若允许越过一个距离,那就可以追上了;关于飞矢不动,他说,这个论证的前提是时间的不连续性,若不承认这个前提,其结论也就不再成立了;关于运动场,他说,相对于运动物体与相对于静止物体的速度当然是不一样的,越过同样距离所花的时间当然也不一样。亚氏批评的意义主要在于使芝诺论辨显得更为明了,前面对诸论辨的转述就显然参照了亚里士多德的这些批评。
黑格尔对芝诺悖论的解决是: “ 运动的意思是说:在这个地点又不在这个地点;这就是空间和时间的连续性, ── 并且这才是使得运动可能的条件。 ” 这个解决方法要点在于强调时间空间的连续性,而且对连续性赋与新的、特有的解释。不过,它似乎并没有直接针对芝诺论辨本身来提出批评,而且关于连续性的独特解释与数学和逻辑所要求的精确性不相容。受黑格尔的影响,我国哲学界一般认为芝诺不懂得连续性和间断性的辩证关系,把这两者机械的对立起来,所以造成运动悖论。这大意是说,芝诺的论证没使用辩证逻辑,因而是无效的。这种批评同样是笼而统之,不关痛痒。
二、分析与分析的困境
19 世纪以来,从数学的、逻辑的角度提出的解决方案较多,我统称为分析的方法。
无穷级数的求和
在芝诺的运动悖论和多悖论中都涉及到无限分割后的求和问题,微积分的发展使得对此进行定量分析成为可能。对于多悖论而言,可以肯定的说,无穷分割后的各部分趋于零但不等于零,其总和不等于零,但也不会是一个无限量。
对于阿喀琉斯而言,他虽然要无数次的到达某个起始点,但它所走的空间距离并不是一个无限量,追龟情形下的空间距离是:

(其中d是初始距离, v1,v2分别是快者和慢者的速度)
是一个有限数,对于有限的距离,当然可以在有限的时间内穿过并达到终点。
2 、无限机器问题
许多人在算出了无穷级数之和是一个有限数之后,就以为解决了芝诺的阿喀琉斯悖论,他们很显然是认为悖论之悖在于把经历无限之点与经历无限之距离混为一谈,只要澄清了这一点,悖论就自然消除了。
然而,算出了距离是有限的并未解决问题。让我们来考察一下我们是怎么算出来的。无穷级数的求和最终要用求极限的方法,求极限是什么意思呢?并不是说我们一项一项的将无穷级数的所有项全部加在一起正好就等于这个极限值,而是说,我们可以让无穷级数的和充分接近这个极限值,想多接近就多接近。注意,依然是 “ 接近 ” 。在初等数学中我们还有一个更为简便的方法求出追上乌龟的时间,那就是假定它是t,可以列出方程:

解方程可得

在这个方法中,有一个前提,那就是假定阿喀琉斯最终追上了乌龟。这个假定说明,数学所告诉我们的不过是,如果能的话,需要多少时间,但数学不解决 “ 是否能 ” 的问题。
因此,还需要回到 “ 在有限时间里越过无限的点 ” 问题上来,如果把越过一个点看成完成了一个动作,此问题就推而广之变成了一个无限操作问题,有人将之命名为 “ 无限机器 ” ( infinite machine ),也有人将之称作 “ 超级任务 ” ( super task )。许多人已经证明了,超级任务是不可能完成的,无限机器不存在。
最有名的无限机器是抛球机器,它是这样设计的:一小球从a处开始向b处抛动,令小球从a处抛到b处时花二分之一分钟,从b抛回a处花四分之一分钟,依此类推,来回抛球时间依次是:

到第n次时所花全部时间是:

现在要求机器在时间到达1分钟时停下来。可是问题出现了,人们发现无法确定小球最终落在何处。从上式看,当n取奇数时,落在b处,取偶数时落在a处,可是小球越抛越快,只有在经过无限次之后才会到达1分钟,但一个无限数是没有奇偶之分的,因此,搞不清1分钟的时候小球处在什么位置,也就是说,小球没有终点,超级任务无法完成。
的确,由于一个无穷序列没有最后一项,所以让阿喀琉斯穿过所有芝诺给出的(无限个)点到达终点是不可能的。
与此类似,无限机器问题的不可解,也强化了二分法的有效性。对芝诺论辨的逻辑分析相反加强了其论辨的力量。 |